Routh-Hurwitz 稳定判据
系统稳定性概念
A stable system should exhibit a bounded output if the corresponding input is bounded.
The closed-loop system transfer function is written as:
T(s)=p(s)q(s)=∏Mi=1(s+zi)sN∏Qk=1(s+σk)∏Rm=1[s2+2αms+(α2m+ω2m)]
q(s)=0 is the characteristic equation whose roots are the poles of the closed-loop system. The output response for an impulse function input(When N = 0) is then:
y(t)=∑k=1QAke−αkt+∑m=1RBm(1ωme−αmtsin(ωmt+θm))
So, to obtain a bounded response, the poles of the closed-loop system must be in the left-hand portion of the s-plane
A necessary and sufficient condition for a feedback system to be stable is that all the poles of the system transfer function have negative real parts.
判断系统稳定性的三种方法:
- the s-plane approach;
- the frequency plane (jω) approach;
- the time domain approach;
Routh-Hurwitz 稳定判据
特征方程:
Δ(s)=q(s)=ansn+an−1sn−1+⋅s+a1s+a0=0
上式可以写成:
an(s−r1)(s−r2)⋯(s−rn)=0
其中:r1,r2,⋯rn<0
又可以写成:
(s)=ansn−an(r1+r2+⋯+rn)sn−1+an(r1r2+r1r3+r2r3+⋯)sn−2−an(r1r2r3+r1r2r4+⋯)sn−3+⋯+an(−1)nr1r2r4⋯rn=0
由上式可得系统稳定的必要条件是特征方程多项式的系数同号且不为0,有系数0时可能为临界稳定状态。
snsn−1sn−2sn−3⋮s0||||||anan−1bn−1cn−1⋮hn−1an−2an−3bn−3cn−3⋮an−4an−5bn−5cn−5⋮
其中:
bn−1=(an−1)(an−2)−an(an−3)an−1bn−3=(an−1)(an−4)−an(an−5)an−1cn−1=(bn−1)(an−3)−(an−1)(bn−3)bn−1
Routh-Hurwitz 稳定判据:特征方程的右平面根数和矩阵的第一列的符号改变次数相等。因此,想要系统稳定,矩阵的第一列不能改变符号。
计算时要考虑以下几种情况:
- 第一列没有0元素;按照Routh-Hurwitz 稳定判据判断即可。
- 第一列有0元素且有0元素的那一行其他元素有非0元素;用符号替代计算;
- 第一列有0元素且有0元素的那一行其他元素全是0元素;用辅助多项式计算根,辅助多项式为全0元素那行的上一行系数组成的多项式。
- 虚轴上有重复的根,不稳定。