Difference between Externalizable and Serializable in Java

本文详细探讨了Java中Serializable与Externalizable接口的区别。主要聚焦于它们如何控制对象序列化过程的不同方式,包括实现细节、性能考量及适用场景。此外,还讨论了在不同情况下选择其中一个接口的原因。
One obvious difference that Serializable is a marker interface and doesn't contain any methods whereas Externalizable interface contains two methods: writeExternal(ObjectOutput) and readExternal(ObjectInput). But, the main difference between the two is that Externalizable interface provides complete control to the class implementing the interface over the object serialization process whereas Serializable interface normally uses default implementation to handle the object serialization process.

While implementing Serializable, you are not forced to define any method as it's a marker interface. However, you can use the writeObject or readObject methods to handle the serilaization process of complex objects. But, while implementing Externalizable interface, you are bound to define the two methods: writeExternal and readExternal and all the object serialization process is solely handled by these two methods only.

In case of Serializable interface implementation, state of Superclasses are automatically taken care by the default implementation whereas in case of Externalizable interface the implementing class needs to handle everything on its own as there is no default implementation in this case.

Example Scenario: when to use what?

If everything is automatically taken care by implementing the Serializable interface, why would anyone like to implement the Externalizable interface and bother to define the two methods? Simply to have the complete control on the process. OKay... let's take a sample example to understand this. Suppose we have an object having hundreds of fields (non-transient) and we want only few fields to be stored on the persistent storage and not all. One solution would be to declare all other fields (except those which we want to serialize) as transient and the default Serialization process will automatically take care of that. But, what if those few fields are not fixed at design tiime instead they are conditionally decided at runtime. In such a situation, implementing Externalizable interface will probably be a better solution. Similarly, there may be scenarios where we simply don't want to maintain the state of the Superclasses (which are automatically maintained by the Serializable interface implementation).

Which has better performance - Externalizable or Serializale?

In most of the cases (or in all if implemented correctly), Externalizable would be more efficient than Serializable for the simple reason that in case of Externalizable the entire process of marshalling, un-marshalling, writing to the stream, and reading back from stream, etc. is under your control i.e., you got to write the code and you can of course choose the best way depending upon the situaton you are in. In case of Serializable, this all (or at least most of it) is done implicitly and the internal implementation being generic to support any possible case, can ofcourse not be the most efficient. The other reason for Serializable to be less efficient is that in this case several reflective calls are made internally to get the metadata of the class. Of course, you would not need any such call is needed in case Externalizable.

However, the efficiency comes at a price. You lose flexibility because as soon as your class definition changes, you would probably need to modify your Externaliable implementation as well. Additionally, since you got to write more code in case Externalizable, you increase the chances of adding more bugs in your application.

Another disadvantage of Externalizable is that you got to have the class to interpret the stream as the stream format is an opaque binary data. Normal Serialization adds field names and types (this why reflective calls are needed here) into the stream, so it's possible to re-construct the object even without the availability of the object's class. But, you need to write the object reconstruction code yourself as Java Serialization doesn't provide any such API at the moment. The point is that in case of Serialzable you can at least write your code as the stream is enriched with field names and types whereas in case Externalizable the stream contains just the data and hence you can't unless you use the class definition. As you can see Serializable not only makes many reflective calls, but also puts the name/type info into the stream and this would of course take some time making Serialzable slower than the corresponding Externalizable process where you got to stuff only the data into the stream.

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值