TreeMap实现了红黑树的结构,实现了有序map。
继承结构
public class TreeMap<K,V>
extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, java.io.Serializable

TreeMap继承自AbstractMap,实现了NavigableMap接口。
1.AbstactMap实现了基本的map操作
2.NavigableMap接口继承自SortedMap接口,约定了comparator()方法,从而实现排序功能
成员变量
private final Comparator<? super K> comparator;
//跟节点Node
private transient Entry<K,V> root;
//node数量
private transient int size = 0;
//改变的次数,实现fastfail
private transient int modCount = 0;
Node 节点的内部类
static final class Entry<K,V> implements Map.Entry<K,V> {
K key;
V value;
Entry<K,V> left;
Entry<K,V> right;
Entry<K,V> parent;
boolean color = BLACK;
Entry(K key, V value, Entry<K,V> parent) {
this.key = key;
this.value = value;
this.parent = parent;
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
public V setValue(V value) {
V oldValue = this.value;
this.value = value;
return oldValue;
}
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
}
public int hashCode() {
int keyHash = (key==null ? 0 : key.hashCode());
int valueHash = (value==null ? 0 : value.hashCode());
return keyHash ^ valueHash;
}
public String toString() {
return key + "=" + value;
}
}
可以看到节点主要有这样几个属性,父节点,左节点和右节点,以及节点的红黑属性。
构造方法
public TreeMap() {
comparator = null;
}
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
public TreeMap(Map<? extends K, ? extends V> m) {
comparator = null;
putAll(m);
}
public TreeMap(SortedMap<K, ? extends V> m) {
comparator = m.comparator();
try {
buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
}
可以传入一个map 或者sortedMap
增/改:put(k,v)
public V put(K key, V value) {
Entry<K,V> t = root;
//如果根节点不存在,则置为根节点
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
//存在比较器
if (cpr != null) {
do {
parent = t;
//将key进行比较
cmp = cpr.compare(key, t.key);
//小于0 t迭代为左侧,否则为右侧节点,迭代后的t==null ,即为要插入的位置(不准确,包含左右中可能)
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
//同上,不过是对key使用自然排序
else {
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
//生成node节点
Entry<K,V> e = new Entry<>(key, value, parent);
//根据大小 放入左或右节点
if (cmp < 0)
parent.left = e;
else
parent.right = e;
//修正红黑
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
删:remove 操作
public V remove(Object key) {
Entry<K,V> p = getEntry(key);
if (p == null)
return null;
V oldValue = p.value;
deleteEntry(p);
return oldValue;
}
删除操作包含了getEntry方法,和deleteEntry方法
getEntry
final Entry<K,V> getEntry(Object key) {
// Offload comparator-based version for sake of performance
if (comparator != null)
return getEntryUsingComparator(key);
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
Entry<K,V> p = root;
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
return null;
}
可以看到,是使用二分法,从根元素找到指定元素返回。
deleteMap
private void deleteEntry(Entry<K,V> p) {
modCount++;
size--;
// If strictly internal, copy successor's element to p and then make p
// point to successor.
//该节点存在左右节点
if (p.left != null && p.right != null) {
//找到后继节点,即该节点右数的最小节点
Entry<K,V> s = successor(p);
p.key = s.key;
p.value = s.value;
p = s;
} // p has 2 children
// Start fixup at replacement node, if it exists.
Entry<K,V> replacement = (p.left != null ? p.left : p.right);
//处理后继节点的子节点(最多存在右节点)
//后继节点不是叶子节点,将子节点挂到后继节点的父节点下
if (replacement != null) {
// Link replacement to parent
replacement.parent = p.parent;
if (p.parent == null)
root = replacement;
else if (p == p.parent.left)
p.parent.left = replacement;
else
p.parent.right = replacement;
// Null out links so they are OK to use by fixAfterDeletion.
p.left = p.right = p.parent = null;
// Fix replacement
if (p.color == BLACK)
fixAfterDeletion(replacement);
} else if (p.parent == null) { // return if we are the only node.
root = null;
//如果后继节点是叶子节点,删除该节点
} else { // No children. Use self as phantom replacement and unlink.
if (p.color == BLACK)
fixAfterDeletion(p);
if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
}
查:get()
public V get(Object key) {
Entry<K,V> p = getEntry(key);
return (p==null ? null : p.value);
}
上文已说,通过getEntry二分查找。
面试中经常问到的相关问题:
1.说一下TreeMap的数据结构
TreeMap 实现了一个红黑树结构的map,实现了有序存取。
2.时间复杂度是多少?
查找、插入、删除在最坏情况下的复杂度都是O(lgN)

本文深入解析了TreeMap的数据结构,其基于红黑树实现有序Map,详细介绍了TreeMap的内部节点结构、构造方法、增删查操作及时间复杂度。TreeMap能够提供O(logN)级别的查找、插入和删除效率。
171万+

被折叠的 条评论
为什么被折叠?



