Pseudoprime numbers
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2446 Accepted Submission(s): 1000
Problem Description
Fermat's theorem states that for any prime number p and for any integer a > 1, a^p == a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as
base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1,000,000,000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Given 2 < p ≤ 1,000,000,000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
Sample Output
no no yes no yes yes快速幂取模:题意:两个数,q,a.,如果q是素数,输出no;如果(a^q)%q==a,输出yes否则输出no!代码:#include<stdio.h> bool judge(__int64 n)//判断素数 { __int64 i; for(i=2;i*i<=n;i++) if(n%i==0) return false; return true; } int Pseudoprime(__int64 a,__int64 b,__int64 k)//判断是否符合条件 { __int64 ans=1; a=a%k; while(b>0) { if(b%2) ans=(ans*a)%k; b=b/2; a=(a*a)%k; } return ans; } int main() { __int64 n,m,i; while(scanf("%I64d%I64d",&n,&m),n,m) { if(judge(n)) { printf("no\n"); continue; } __int64 s=Pseudoprime(m,n,n); if(s==m) printf("yes\n"); else printf("no\n"); } return 0; }