成套方法
解决将和式转为封闭式的方法
命题
将∑k=1nk\sum_{k=1}^nk∑k=1nk转为封闭式
求解
方法:成套方法
- 转为递归式
令S(n)=∑k=1nkS(n)=\sum_{k=1}^nkS(n)=∑k=1nk
不难看出,S(n)=S(n−1)+nS(n)=S(n-1)+nS(n)=S(n−1)+n
- 一般化
令R(n)R(n)R(n)为S(n)S(n)S(n)的一般形式
即R(0)=αR(n)=R(n−1)+βn+γR(0)=\alpha \qquad R(n)=R(n-1)+\beta n+\gammaR(0)=αR(n)=R(n−1)+βn+γ
(1) 令R(n)=1R(n)=1R(n)=1
∴R(0)=1∴α=1∵R(n)=R(n−1)+βn+γ∴1=1+βn+γ\therefore R(0)=1\\ \therefore \alpha = 1\\ \because R(n)=R(n-1)+\beta n+\gamma\\ \therefore 1=1+\beta n + \gamma∴R(0)=1∴α=1∵R(n)=R(n−1)+βn+γ∴1=1+βn+γ
{α=1β=0γ=0 \left\{ \begin{aligned} \alpha = 1 \\ \beta = 0 \\ \gamma = 0 \end{aligned} \right. ⎩⎪⎨⎪⎧α=1β=0γ=0
(2) 令R(n)=nR(n)=nR(n)=n
∴R(0)=0∴α=0∵R(n)=R(n−1)+βn+γ∴n=(n−1)+βn+γ\therefore R(0) = 0\\ \therefore \alpha = 0\\ \because R(n)=R(n-1)+\beta n+\gamma\\ \therefore n = (n-1)+\beta n + \gamma∴R(0)=0∴α=0∵R(n)=R(n−1)+βn+γ∴n=(n−1)+βn+γ
{α=0β=0γ=1 \left\{ \begin{aligned} \alpha = 0 \\ \beta = 0 \\ \gamma = 1 \end{aligned} \right. ⎩⎪⎨⎪⎧α=0β=0γ=1
(3) 令R(n)=n2R(n) = n^2R(n)=n2
∴R(0)=0−∴α=0∵R(n)=R(n−1)+βn+γ∴n2=(n−1)2+βn+γ∴n2=n2−2n+1+βn+γ∴−1=(β−2)n+γ\therefore R(0) = 0\\ -\therefore \alpha = 0\\ \because R(n)=R(n-1)+\beta n+\gamma\\ \therefore n^2 = (n-1)^2+\beta n + \gamma\\ \therefore n^2 = n^2 - 2n + 1+\beta n + \gamma\\ \therefore -1 =(\beta - 2) n + \gamma∴R(0)=0−∴α=0∵R(n)=R(n−1)+βn+γ∴n2=(n−1)2+βn+γ∴n2=n2−2n+1+βn+γ∴−1=(β−2)n+γ
{α=0β=2γ=−1 \left\{ \begin{aligned} \alpha = 0 \\ \beta = 2 \\ \gamma = -1 \end{aligned} \right. ⎩⎪⎨⎪⎧α=0β=2γ=−1
3.计算系数
令R(n)=A(n)α+B(n)β+C(n)γR(n)=A(n)\alpha + B(n)\beta + C(n)\gammaR(n)=A(n)α+B(n)β+C(n)γ
(1) 当R(n)=1R(n) = 1R(n)=1时:
∵{α=1β=0γ=0∴A(n)=1\because\left\{ \begin{aligned} \alpha = 1 \\ \beta = 0 \\ \gamma = 0 \end{aligned} \right.\\ \therefore A(n) = 1∵⎩⎪⎨⎪⎧α=1β=0γ=0∴A(n)=1
(2) 当R(n)=nR(n) = nR(n)=n时:
∵{α=0β=0γ=1∴C(n)=n\because\left\{ \begin{aligned} \alpha = 0 \\ \beta = 0 \\ \gamma = 1 \end{aligned} \right.\\ \therefore C(n) = n∵⎩⎪⎨⎪⎧α=0β=0γ=1∴C(n)=n
(3) 当R(n)=n2R(n) = n^2R(n)=n2时:
{α=0β=2γ=−1∴2B(n)−C(n)=n2 \left\{ \begin{aligned} \alpha = 0 \\ \beta = 2 \\ \gamma = -1 \end{aligned} \right.\\ \therefore 2B(n) - C(n) = n^2⎩⎪⎨⎪⎧α=0β=2γ=−1∴2B(n)−C(n)=n2
综上:
{A(n)=1C(n)=n2B(n)−C(n)=n2 \left\{ \begin{aligned} A(n) = 1 \\ C(n) = n \\ 2B(n) - C(n) = n^2 \end{aligned} \right. ⎩⎪⎨⎪⎧A(n)=1C(n)=n2B(n)−C(n)=n2
解得
{A(n)=1B(n)=n⋅(n+1)2C(n)=n \left\{
\begin{aligned}
A(n) = 1 \\
B(n) = \frac{n\cdot (n+1)}{2} \\
C(n) = n
\end{aligned}
\right.
⎩⎪⎪⎪⎨⎪⎪⎪⎧A(n)=1B(n)=2n⋅(n+1)C(n)=n
4.具体化
S(n)=S(n−1)+nS(n) = S(n-1) + nS(n)=S(n−1)+n
令P(n)P(n)P(n)为当β=1,γ=0\beta = 1, \gamma = 0β=1,γ=0时R(n)R(n)R(n)的值
∴P(n)=P(n−1)+n=S(n)\therefore P(n) = P(n-1) + n = S(n)∴P(n)=P(n−1)+n=S(n)
∴S(n)\therefore S(n)∴S(n)为当β=1,γ=0\beta = 1, \gamma = 0β=1,γ=0时R(n)R(n)R(n)的值
∴S(n)=B(n)∴S(n)=n⋅(n+1)2\therefore S(n) = B(n)\\ \therefore S(n) = \frac{n \cdot (n+1)}{2}∴S(n)=B(n)∴S(n)=2n⋅(n+1)