1142 Maximal Clique (25 分)

本文深入探讨了图论中的最大团问题,介绍了团和最大团的概念,并提供了一个判断给定顶点子集是否能构成最大团的算法实现。通过具体实例展示了输入输出规范,帮助读者理解和应用最大团问题。

1142 Maximal Clique (25 分)

A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. A maximal clique is a clique that cannot be extended by including one more adjacent vertex. (Quoted from https://en.wikipedia.org/wiki/Clique_(graph_theory))

Now it is your job to judge if a given subset of vertices can form a maximal clique.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers Nv (≤ 200), the number of vertices in the graph, and Ne, the number of undirected edges. Then Ne lines follow, each gives a pair of vertices of an edge. The vertices are numbered from 1 to Nv.

After the graph, there is another positive integer M (≤ 100). Then M lines of query follow, each first gives a positive number K (≤ Nv), then followed by a sequence of K distinct vertices. All the numbers in a line are separated by a space.

Output Specification:

For each of the M queries, print in a line Yes if the given subset of vertices can form a maximal clique; or if it is a clique but not a maximal clique, print Not Maximal; or if it is not a clique at all, print Not a Clique.

Sample Input:

8 10
5 6
7 8
6 4
3 6
4 5
2 3
8 2
2 7
5 3
3 4
6
4 5 4 3 6
3 2 8 7
2 2 3
1 1
3 4 3 6
3 3 2 1

Sample Output:

Yes
Yes
Yes
Yes
Not Maximal
Not a Clique

 最大团问题:团的概念,在由点和线组成的图中,如果有一堆点(也就是点的集合,这么说可能有点不严谨但是会好理解一些),它们之间两两相邻,那么他们就是一个团(clique),如果这堆点不仅能两两相邻,而且它们不能通过新加入一个点进而形成一个更大的团,那么这个团就叫做最大团。

#include <iostream>
#include<cstdlib>
#include<cstdio>
#include <algorithm>
#include <string>
using namespace std;
int e[210][210];

int judge(int a[],int k)
{
    for(int i=0; i<k; i++)
    {
        for(int j=0; j<k; j++)
        {
            if(e[a[i]][a[j]]==0)
                return 0;
        }
    }
    return 1;
}
int main()
{
    int nv,ne,c,d;


    scanf("%d%d",&nv,&ne);
    for(int i=0; i<210; i++)
        for(int j=0; j<210; j++)
        {
            e[i][j]=0;
            if(i==j)
                e[i][j]=1;
        }
    for(int i=0; i<ne; i++)
    {
        scanf("%d%d",&c,&d);
        e[c][d]=1;
        e[d][c]=1;

    }
    int m;
    scanf("%d",&m);
    int k,a[210];
    for(int i=0; i<m; i++)
    {

        scanf("%d",&k);

        for(int j=0; j<k; j++)
        {
            scanf("%d",&a[j]);
        }
        if(judge(a,k)==0)
        {
            printf("Not a Clique\n");
        }
        else
        {
            int g=0;
            for(int i=1;i<=nv;i++)
            {
                int flag=0;
                for(int j=0;j<k;j++)
                {
                    if(a[j]==i)
                    {
                        flag=1;
                        break;
                    }

                }
                if(flag==0)
                {
                    a[k]=i;
                    if(judge(a,k+1)==1)
                    {
                        g=1;
                        printf("Not Maximal\n");
                        break;
                    }
                }

            }
            if(g==0)
                printf("Yes\n");
        }


    }
    return 0;
}

 

### ### Max-Clique 算法原理及实现方法 Max-Clique 问题是指在无向图中寻找最大团(maximal clique)的问题,其中“团”是指图中一组两两相连的节点集合,而最大团是指无法再扩展的团[^2]。该问题是图论中的经典 NP-hard 问题,因此在大规模图中求解时需要高效的搜索策略和剪枝机制。 #### 回溯搜索与 Bron–Kerbosch 算法 目前最经典的 Max-Clique 求解方法是 Bron–Kerbosch 算法,它采用深度优先回溯搜索策略,能够枚举所有极大团。该算法通过三个集合 R、P、X 来维护当前搜索状态: - R:当前属于团的节点集合; - P:可能扩展进入团的候选节点集合; - X:已经被排除的节点集合,用于避免重复搜索。 在每一步递归中,算法尝试将 P 中的节点加入 R,并递归扩展其邻居节点,同时对 P 和 X 进行更新。当 P 和 X 都为空时,R 构成一个极大团。 以下为 Bron–Kerbosch 算法的简化 Python 实现示例: ```python def bron_kerbosch(R, P, X, graph, cliques): if not P and not X: cliques.append(set(R)) return for v in list(P): R.add(v) bron_kerbosch(R, P & graph[v], X & graph[v], graph, cliques) R.remove(v) P.remove(v) X.add(v) ``` 该算法在稀疏图中效率较高,但在稠密图中时间复杂度会显著上升,因此需要引入优化策略。 #### 优化策略:排序与剪枝 为了提升 Bron–Kerbosch 的效率,可以引入以下优化: - **选择性扩展(Pivot)**:引入一个节点 u,使得 P 中不与 u 相邻的节点可被跳过,从而减少递归次数; - **支剪枝**:在每次递归中优先选择度数高的节点扩展,以加速收敛; - **启发式排序**:按照节点度数降序排列候选节点,使得较大的团更早被发现。 引入 pivot 的 Bron–Kerbosch 算法变体如下: ```python def bron_kerbosch_pivot(R, P, X, graph, cliques): if not P and not X: cliques.append(set(R)) return U = P | X if U: u = max(U, key=lambda node: len(graph[node])) for v in P - graph[u]: R.add(v) bron_kerbosch_pivot(R, P & graph[v], X & graph[v], graph, cliques) R.remove(v) P.remove(v) X.add(v) else: for v in P: R.add(v) bron_kerbosch_pivot(R, P & graph[v], X & graph[v], graph, cliques) R.remove(v) P.remove(v) X.add(v) ``` #### 近似与启发式方法 由于 Max-Clique 是 NP-hard 问题,在大规模图中通常使用近似算法或启发式方法求解,例如: - **局部搜索**:从一个初始团出发,通过交换节点逐步扩展; - **遗传算法**:模拟生物进化过程进行团搜索; - **模拟退火**:引入概率机制跳出局部最优; - **基于图神经网络的方法**:利用图注意力网络(GAT)预测节点参与团的可能性,减少搜索空间。 这些方法虽然不能保证找到最大团,但能在可接受的时间内找到高质量的近似解。 #### 应用场景 Max-Clique 算法广泛应用于社交网络析、生物信息学、社区发现等领域。例如,在社交网络中识别高度互动的用户群体,或在蛋白质相互作用网络中发现功能模块。 ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值