BFS

BFS

算法概论第五周

103. Binary Tree Zigzag Level Order Traversal

题目链接

题目描述

Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to right, then right to left for the next level and alternate between).

For example:
Given binary tree [3,9,20,null,null,15,7],
    3
   / \
  9  20
    /  \
   15   7
return its zigzag level order traversal as:
[
  [3],
  [20,9],
  [15,7]
]

思路分析

  • BFS的经典应用,层次遍历
  • 最后结果奇数行reverse即可
  • pair包含utilityreverse包含algorithm

代码实现

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */

class Solution {
public:
    vector<vector<int> > zigzagLevelOrder(TreeNode* root) {
        vector<vector<int> > res;
        if(!root)
            return res;
        queue<pair<TreeNode*, int> > que;
        que.push(make_pair(root, 0));
        while(!que.empty()){
            TreeNode* now = que.front().first;
            int level = que.front().second;
            que.pop();
            if(res.size() <= level){
                vector<int> tmp;
                tmp.push_back(now->val);
                res.push_back(tmp);
            }
            else{
                res[level].push_back(now->val);
            }
            if(now->left){
                que.push(make_pair(now->left, level + 1));
            }
            if(now->right){
                que.push(make_pair(now->right, level + 1));
            }
        }
        for(int i = 0; i < res.size(); i++){
            if(i & 1 == 1){
                reverse((*(res.begin() + i)).begin(), (*(res.begin() + i)).end());
            }
        }
        return res;
    }
};

BFS(广度优先搜索)算法是一种用于遍历或搜索图结构的经典算法,其核心原理是从起点开始,逐层扩展搜索范围,直到找到目标节点或遍历完整个图。该算法特别适用于求解最短路径问题或扩散性质的区域问题[^1]。 ### BFS算法原理 BFS算法从初始状态(起点)出发,按照状态转换规则(图结构中的边),逐步遍历所有可能的状态(节点),直到找到目标状态(终点)。其核心思想是“先扩散后深入”,即每次处理当前层的所有节点,再进入下一层处理。这种逐层扩散的方式确保了BFS在首次到达目标节点时,所走的路径是最短的。 ### BFS算法实现方法 BFS算法通常使用队列(Queue)来实现,队列用于存储待处理的节点。具体步骤如下: 1. 将起点节点加入队列,并标记为已访问。 2. 当队列不为空时,取出队列中的第一个节点。 3. 对当前节点进行处理,例如检查是否为目标节点。 4. 遍历当前节点的所有相邻节点,如果未被访问,则标记为已访问,并加入队列。 5. 重复步骤2-4,直到找到目标节点或队列为空。 以下是一个简单的BFS算法实现示例,用于遍历图结构: ```python from collections import deque def bfs(graph, start): visited = set() # 用于记录已访问的节点 queue = deque([start]) # 初始化队列 visited.add(start) # 标记起点为已访问 while queue: node = queue.popleft() # 取出队列中的第一个节点 print(node) # 处理当前节点 # 遍历当前节点的所有相邻节点 for neighbor in graph[node]: if neighbor not in visited: visited.add(neighbor) # 标记为已访问 queue.append(neighbor) # 加入队列 ``` ### BFS算法的复杂度分析 BFS算法的时间复杂度和空间复杂度均与图中的节点数和边数相关。假设图中有 $V$ 个节点和 $E$ 条边,则时间复杂度为 $O(V + E)$,空间复杂度为 $O(V)$。这是因为BFS需要访问所有节点和边,并且队列可能存储最多 $V$ 个节点[^1]。 ### BFS算法的应用场景 BFS算法广泛应用于以下问题: 1. **走迷宫最短路径**:寻找从起点到终点的最短路径。 2. **数字按规则转换的最少次数**:例如,将一个数字转换为另一个数字所需的最少操作次数。 3. **棋盘上某个棋子N步后能到达的位置总数**:计算棋子在N步内可以到达的所有位置。 4. **病毒扩散计算**:模拟病毒在人群中的扩散过程。 5. **图像中连通块的计算**:识别图像中的连通区域[^1]。 ### BFS与DFS的比较 - **BFS**:通过队列实现,适合解决最短路径问题,但空间复杂度较高。 - **DFS**:通过递归或栈实现,适合解决需要遍历完整棵树的问题,但时间复杂度较高。 例如,在满二叉树的情况下,BFS的空间复杂度为 $O(N)$,而DFS的空间复杂度为 $O(\log N)$[^2]。 ### BFS的优势与局限性 - **优势**:BFS可以保证首次到达目标节点时的路径是最短的,适用于最短路径问题。 - **局限性**:BFS的空间复杂度较高,尤其在处理大规模图时,可能需要较多的内存资源[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值