并查集的使用

本文介绍如何使用并查集算法解决相似字符串分组问题,通过判断两个字符串是否可以通过交换两个位置的字符变为相同,形成连接的相似字符串组。提供两种算法,一种适用于较少的字符串数量,另一种适用于较短的字符串,详细解释了每种算法的思路及其实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

并查集的使用

算法概论第六周


题目链接

题目描述

Two strings X and Y are similar if we can swap two letters (in different positions) of X, so that it equals Y.

For example, "tars" and "rats" are similar (swapping at positions 0 and 2), and "rats" and "arts" are similar, but "star" is not similar to "tars", "rats", or "arts".

Together, these form two connected groups by similarity: {"tars", "rats", "arts"} and {"star"}.  Notice that "tars" and "arts" are in the same group even though they are not similar.  Formally, each group is such that a word is in the group if and only if it is similar to at least one other word in the group.

We are given a list A of strings.  Every string in A is an anagram of every other string in A.  How many groups are there?

Example 1:

Input: ["tars","rats","arts","star"]
Output: 2

Note:

A.length <= 2000
A[i].length <= 1000
A.length * A[i].length <= 20000
All words in A consist of lowercase letters only.
All words in A have the same length and are anagrams of each other.
The judging time limit has been increased for this question.

思路分析

  • 这道题的测试数据经过了升级,为了能够通过,需要根据A.length和A[i].length的值,执行复杂度为 O ( n 2 w ) O(n^2w) O(n2w) O ( n w 3 ) O(nw^3) O(nw3)两种算法之一
  • O ( n 2 w ) O(n^2w) O(n2w)的思想是使用并查集,首先判断两个字符串是否similiar只需要 O ( w ) O(w) O(w)的复杂度,只需要一个二重循环判断两两字符串是否similiar,如果是就归为同一个集合。
  • O ( n w 3 ) O(nw^3) O(nw3)的思想是对于一个字符串,递归枚举出它similiar的所有串,然后用映射的方法来检查符合条件的串
  • 比较 n 2 w n^2w n2w n w 3 nw^3 nw3的值决定用哪一种算法

代码实现

  • 只实现 O ( n 2 w ) O(n^2w) O(n2w)的版本(通过样例58/62)
 class Solution {
private:
    int ufa[2005] = {};
public:
    int numSimilarGroups(vector<string>& A) {
        int len = A.size();
        // int wlen = A[0].length();
        for(int i = 0; i < len; i++){
            ufa[i] = i;
        }
        for(int i = 0; i < len; i++){
            for(int j = i + 1; j < len; j++){
                if(ufa[i] == ufa[j])
                continue;
                if(isSimiliar(A[i], A[j])){
                    merge(i, j);
                }
            }
        }
        int count = 0;
        for(int i = 0; i < len; i++){
            if(ufa[i] == i)
            count++;
        }
        return count;
    }
    void merge(int a, int b){
        int ha = head(a);
        int hb = head(b);
        if(ha != hb){
            ufa[ha] = hb;
        }
    }
    int head(int a){
        int pos = a;
        while(ufa[pos] != pos){
            pos = ufa[pos];
        }
        return pos;
    }
    bool isSimiliar(string a, string b){
        int len = a.length();
        int count = 0;
        for(int i = 0; i < len; i++){
            if(a[i] != b[i])
            count++;
            if(count > 2)
            return false;
        }
        if(count == 2 || count == 0)
        return true;
        return false;
    }
};
  • 实现 O ( n 2 w ) O(n^2w) O(n2w) O ( n w 3 ) O(nw^3) O(nw3)的版本(引用,待研究
class Solution {
    public int numSimilarGroups(String[] A) {
        int N = A.length;
        int W = A[0].length();
        DSU dsu = new DSU(N);

        if (N < W*W) { // If few words, then check for pairwise similarity: O(N^2 W)
            for (int i = 0; i < N; ++i)
                for (int j = i+1; j < N; ++j)
                    if (similar(A[i], A[j]))
                        dsu.union(i, j);

        } else { // If short words, check all neighbors: O(N W^3)
            Map<String, List<Integer>> buckets = new HashMap();
            for (int i = 0; i < N; ++i) {
                char[] L = A[i].toCharArray();
                for (int j0 = 0; j0 < L.length; ++j0)
                    for (int j1 = j0 + 1; j1 < L.length; ++j1) {
                        swap(L, j0, j1);
                        StringBuilder sb = new StringBuilder();
                        for (char c: L) sb.append(c);
                        buckets.computeIfAbsent(sb.toString(),
                                x-> new ArrayList<Integer>()).add(i);
                        swap(L, j0, j1);
                    }
            }

            for (int i1 = 0; i1 < A.length; ++i1)
                if (buckets.containsKey(A[i1]))
                    for (int i2: buckets.get(A[i1]))
                        dsu.union(i1, i2);
        }

        int ans = 0;
        for (int i = 0; i < N; ++i)
            if (dsu.parent[i] == i) ans++;

        return ans;
    }

    public boolean similar(String word1, String word2) {
        int diff = 0;
        for (int i = 0; i < word1.length(); ++i)
            if (word1.charAt(i) != word2.charAt(i))
                diff++;
        return diff <= 2;
    }

    public void swap(char[] A, int i, int j) {
        char tmp = A[i];
        A[i] = A[j];
        A[j] = tmp;
    }
}

class DSU {
    int[] parent;
    public DSU(int N) {
        parent = new int[N];
        for (int i = 0; i < N; ++i)
            parent[i] = i;
    }
    public int find(int x) {
        if (parent[x] != x) parent[x] = find(parent[x]);
        return parent[x];
    }
    public void union(int x, int y) {
        parent[find(x)] = find(y);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值