给一个链表,若其中包含环,请找出该链表的环的入口结点,否则,输出null
思路:假设x为环前面的路程(黑色路程),a为环入口到相遇点的路程(蓝色路程,假设顺时针走), c为环的长度(蓝色+橙色路程) 当快慢指针相遇的时候: 此时慢指针走的路程为Sslow =x + m * c + a
快指针走的路程为Sfast = x + n * c + a,2 Sslow =Sfast,所以 2 * ( x + m*c + a ) = (x + n *c + a)
从而可以推导出:
x = (n - 2 * m )*c - a= (n - 2 *m -1 )*c + c - a
即环前面的路程 = 数个环的长度(为可能为0) + c - a
什么是c - a?这是相遇点后,环后面部分的路程。(橙色路程)所以,我们可以让一个指针从起点A开始走,让一个指针从相遇点B开始继续往后走,2个指针速度一样,那么,当从原点的指针走到环入口点的时候(此时刚好走了x)从相遇点开始走的那个指针也一定刚好到达环入口点。所以2者会相遇,且恰好相遇在环的入口点。
package link;
/**
* Create by IDEA
* User: zhangqi
* Date: 2019/3/11
* Desc: 给一个链表,若其中包含环,请找出该链表的环的入口结点,否则,输出null
*/
public class Solution {
public ListNode EntryNodeOfLoop(ListNode pHead) {
if (pHead == null || pHead.next == null) return null;
/** 定义快慢指针,快指针走两步,慢指针走一步 */
ListNode fast = pHead.next.next;
ListNode show = pHead.next;
/** 判断是否存在环 */
while (fast != show) {
if (fast != null && fast.next != null) {
fast = fast.next.next;
show = show.next;
} else {
return null;
}
}
/** fast从新指向头指针处,然后快慢指针一起向后遍历 */
fast = pHead;
while (fast != show) {
fast = fast.next;
show = show.next;
}
return show;
}
}
编写代码,以给定值x为基准将链表分割成两部分,所有小于x的结点排在大于或等于x的结点之前
package link;
/**
* Create by IDEA
* User: zhangqi
* Date: 2019/3/11
* Desc: 编写代码,以给定值x为基准将链表分割成两部分,所有小于x的结点排在大于或等于x的结点之前
*/
public class Solution {
/**
* 思路:新建两个链表,链表lit存比x小的结点,链表big存其他的结点
* 然后将big.next置空,并将big置位lit链表的尾结点next
* @param pHead
* @param x
* @return
*/
public ListNode partition(ListNode pHead, int x) {
if (pHead == null) return null;
/** 定义大小两个链表,并创建两个结点记录两个链表的初始位置 */
ListNode big = new ListNode(-1);
ListNode b = big;
ListNode lit = new ListNode(-1);
ListNode l = lit;
/** 遍历链表对比x值,分别存入大小链表中 */
while (pHead != null) {
if (pHead.val < x) {
lit.next = pHead;
lit = pHead;
} else {
big.next = pHead;
big = pHead;
}
pHead = pHead.next;
}
big.next = null; //注意置空,不然会陷入死循环
lit.next = b.next;
return l.next;
}
}