总体思路与一元线性回归思想一样,现在将数据以矩阵形式进行运算,更加方便。
一元线性回归实现代码
下面是多元线性回归用Python实现的代码:
import numpy as np
def linearRegression(data_X,data_Y,learningRate,loopNum):
W = np.zeros(shape=[1, data_X.shape[1]])
# W的shape取决于特征个数,而x的行是样本个数,x的列是特征值个数
# 所需要的W的形式为 行=特征个数,列=1 这样的矩阵。但也可以用1行,再进行转置:W.T
# X.shape[0]取X的行数,X.shape[1]取X的列数
b = 0
#梯度下降
for i in range(loopNum):
W_derivative =