import tensorflow as tf
from tensorflow.python.estimator.inputs import numpy_io
import numpy as np
import collections
from tensorflow.python.framework import errors
from tensorflow.python.platform import test
from tensorflow.python.training import coordinator
from tensorflow import feature_column
from tensorflow.python.feature_column.feature_column import _LazyBuilder
def test_numeric():
'''
两个产生的结果相同
_LazyBuilder
input_layer
:return:
'''
price = {'price': [[1.], [2.], [3.], [4.],[10.]]} # 4行样本
builder = _LazyBuilder(price)
def transform_fn(x):
return x + 2
price_column = feature_column.numeric_column('price', normalizer_fn=transform_fn)
price_transformed_tensor = price_column._get_dense_tensor(builder)
with tf.Session() as session:
print(session.run([price_transformed_tensor]))
# 使用input_layer
price_transformed_tensor = feature_column.input_layer(price, [price_column])
with tf.Session() as session:
print('use input_layer' + '_' * 40)
print(session.run([price_transformed_tensor]))
def test_bucketized_column():
price = {'price': [[5.], [15.], [25.], [35.], [55.], [45.]]} # 4行样本
price_column = feature_column.numeric_column('price')
bucket_price = feature_column.bucketized_column(price_column, [0, 10, 20, 30, 40])
price_bucket_tensor = feature_column.input_layer(price, [bucket_price])
with tf.Session() as session:
print(session.run([price_bucket_tensor]))
def test_categorical_column_with_vocabulary_list():
# color_data = {'color': [['R', 'R'], ['G', 'R'], ['B', 'G'], ['A', 'A']]} # 4行样本
color_data = {'color
Feature_col
最新推荐文章于 2023-05-18 14:21:52 发布
这段代码展示了如何在 TensorFlow 中使用不同的特征列类型,包括数值列、桶化列、词汇列表分类列、哈希桶列、嵌入列以及加权分类列,并演示了线性模型和交叉列的创建与应用。

最低0.47元/天 解锁文章
4269

被折叠的 条评论
为什么被折叠?



