Feature_col

这段代码展示了如何在 TensorFlow 中使用不同的特征列类型,包括数值列、桶化列、词汇列表分类列、哈希桶列、嵌入列以及加权分类列,并演示了线性模型和交叉列的创建与应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import tensorflow as tf
from tensorflow.python.estimator.inputs import numpy_io
import numpy as np
import collections
from tensorflow.python.framework import errors
from tensorflow.python.platform import test
from tensorflow.python.training import coordinator
from tensorflow import feature_column

from tensorflow.python.feature_column.feature_column import _LazyBuilder

def test_numeric():
    '''
    两个产生的结果相同
    _LazyBuilder
    input_layer
    :return:
    '''

    price = {'price': [[1.], [2.], [3.], [4.],[10.]]}  # 4行样本
    builder = _LazyBuilder(price)

    def transform_fn(x):
        return x + 2

    price_column = feature_column.numeric_column('price', normalizer_fn=transform_fn)

    price_transformed_tensor = price_column._get_dense_tensor(builder)

    with tf.Session() as session:
        print(session.run([price_transformed_tensor]))

    # 使用input_layer

    price_transformed_tensor = feature_column.input_layer(price, [price_column])

    with tf.Session() as session:
        print('use input_layer' + '_' * 40)
        print(session.run([price_transformed_tensor]))

def test_bucketized_column():

    price = {'price': [[5.], [15.], [25.], [35.], [55.], [45.]]}  # 4行样本

    price_column = feature_column.numeric_column('price')
    bucket_price = feature_column.bucketized_column(price_column, [0, 10, 20, 30, 40])

    price_bucket_tensor = feature_column.input_layer(price, [bucket_price])

    with tf.Session() as session:
        print(session.run([price_bucket_tensor]))

def test_categorical_column_with_vocabulary_list():

    # color_data = {'color': [['R', 'R'], ['G', 'R'], ['B', 'G'], ['A', 'A']]}  # 4行样本
    color_data = {'color': [['R'], ['R'], ['G'], ['A']]}  # 4行样本
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值