NBUT 1219 Time

本文详细介绍了如何使用字符串模拟并输出数字时钟显示的时间,包括处理0的情况,并提供了多种优化方法来简化代码实现。
  • [1219] Time

  • 时间限制: 1000 ms 内存限制: 131072 K
  • 问题描述
  • Digital clock use 4 digits to express time, each digit is described by 3*3 characters (including”|”,”_”and” “).now given the current time, please tell us how can it be expressed by the digital clock.
  • 输入
  • There are several test cases.
    Each case contains 4 integers in a line, separated by space.
    Proceed to the end of file.
  • 输出
  • For each test case, output the time expressed by the digital clock such as Sample Output.
  • 样例输入
  • 1 2 5 6
    2 3 4 2
  • 样例输出
  •     _  _  _ 
      | _||_ |_ 
      ||_  _||_|
     _  _     _ 
     _| _||_| _|
    |_  _|  ||_ 
  • 提示
  • The digits showed by the digital clock are as follows:
       _  _     _  _  _  _  _  _ 
     | _| _||_||_ |_   ||_||_|| |
     ||_  _|  | _||_|  ||_| _||_|
  • 来源
  • 辽宁省赛2010

    题目意思也很简单就是用字符串模拟时钟,注意每个数字占三格,最暴力的方法就是直接定义三个字符数组,按要求输出,还有一点就是0在最后一位,要特殊处理一下。

    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <cstdlib>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <cmath>
    #include <ctime>
    #include <queue>
    #include <stack>
    #include <set>
    #include <map>
    using namespace std;
    typedef long long LL;
    const int maxn= 100000 + 10;
    
    char s1[35]="     _  _     _  _  _  _  _  _ ";
    char s2[35]="   | _| _||_||_ |_   ||_||_|| |";
    char s3[35]="   ||_  _|  | _||_|  ||_| _||_|";
    int main() {
        int a,b,c,d;
        while(~scanf("%d%d%d%d",&a,&b,&c,&d))
        {
            getchar();
            if(a==0)
                a=10;
            if(b==0)
                b=10;
            if(c==0)
                c=10;
            if(d==0)
                d=10;
            printf("%c%c%c%c%c%c%c%c%c%c%c%c\n",s1[a*3-2],s1[a*3-1],s1[a*3],s1[b*3-2],s1[b*3-1],s1[b*3],s1[c*3-2],s1[c*3-1],s1[c*3],s1[d*3-2],s1[d*3-1],s1[d*3]);
            printf("%c%c%c%c%c%c%c%c%c%c%c%c\n",s2[a*3-2],s2[a*3-1],s2[a*3],s2[b*3-2],s2[b*3-1],s2[b*3],s2[c*3-2],s2[c*3-1],s2[c*3],s2[d*3-2],s2[d*3-1],s2[d*3]);
            printf("%c%c%c%c%c%c%c%c%c%c%c%c\n",s3[a*3-2],s3[a*3-1],s3[a*3],s3[b*3-2],s3[b*3-1],s3[b*3],s3[c*3-2],s3[c*3-1],s3[c*3],s3[d*3-2],s3[d*3-1],s3[d*3]);
        }
        return 0;
    }
    

    这是最开始写的纯暴力方法,看上去好不协调啊…+_+…

    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <cstdlib>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <cmath>
    #include <ctime>
    #include <queue>
    #include <stack>
    #include <set>
    #include <map>
    using namespace std;
    typedef long long LL;
    const int maxn= 100000 + 10;
    
    char  s[3][35]= {"     _  _     _  _  _  _  _  _ ",
                     "   | _| _||_||_ |_   ||_||_|| |",
                     "   ||_  _|  | _||_|  ||_| _||_|"
                    };
    int a[4];
    int main() {
        while(~scanf("%d",&a[0])) {
            for(int i=1; i<4; i++)
                scanf("%d",&a[i]);
            for(int i=0; i<4; i++)
                if(!a[i])
                    a[i]+=10;
            for(int i=0; i<3; i++) {
                for(int j=0; j<4; j++)
                {
                    int t=a[j];
                    printf("%c%c%c",s[i][t*3-2],s[i][t*3-1],s[i][t*3]);
                }
                puts("");
            }
        }
        return 0;
    }
    

    O(∩_∩)O哈哈~这样看上去清爽多了吧。

    还有一种比较屌的方法,是照着基神的代码敲的(真不知道基神脑袋怎么长的,就是跟常人思维不一样……好吧…%>_<%…其实不可否认的还是自己太愚笨…Orz),虽然本人目前没看懂,但还是贴上来把,求大神赐教^_^

    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <cstdlib>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <cmath>
    #include <ctime>
    #include <queue>
    #include <stack>
    #include <set>
    #include <map>
    using namespace std;
    typedef long long LL;
    const int maxn= 100000 + 10;
    
    char  s[50][50];
    int data[]={119,36,93,109,46,107,123,37,127,111};
    
    int slove(int p,int x)
    {
        x=data[x];
        if(x>>0&1)s[0][p+1]='_';
        if(x>>1&1)s[1][p+0]='|';
        if(x>>2&1)s[1][p+2]='|';
        if(x>>3&1)s[1][p+1]='_';
        if(x>>4&1)s[2][p+0]='|';
        if(x>>5&1)s[2][p+2]='|';
        if(x>>6&1)s[2][p+1]='_';
    }
    
    int main() {
        int a[5];
        while(~scanf("%d",&a[0])) {
            for(int i=1; i<4; i++)
                scanf("%d",&a[i]);
            memset(s,' ',sizeof(s));
            for(int i=0;i<3;i++)
                s[i][12]=0;
            for(int i=0;i<4;i++)
                slove(i*3,a[i]);
            for(int i=0;i<3;i++)
                printf("%s\n",s[i]);
        }
        return 0;
    }
    

{"id": "cmpl-e759f3d8-78e1-11f0-b2b4-1a85109d8f07", "choices": [{"finish_reason": "stop", "index": 0, "message": {"content": "<think>\nOkay, so I need to figure out how many whole-number divisors there are for the integer given by the expression $ a(2a + b) - 2a^2 + ab $, where $ a $ and $ b $ are different prime numbers greater than 2. Let me start by simplifying the expression step by step.\n\nFirst, let me write down the expression again to make sure I have it right: $ a(2a + b) - 2a^2 + ab $. Let me expand the first term, which is $ a(2a + b) $. If I distribute the $ a $, that becomes $ 2a^2 + ab $. So substituting that back into the original expression, we have:\n\n$ 2a^2 + ab - 2a^2 + ab $.\n\nNow let me combine like terms. The $ 2a^2 $ and $ -2a^2 $ cancel each other out, right? So that leaves me with $ ab + ab $, which is $ 2ab $. So the entire expression simplifies to $ 2ab $. \n\nWait, so the problem is asking for the number of whole-number divisors of $ 2ab $, where $ a $ and $ b $ are different primes greater than 2. Let me confirm that I simplified correctly. Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nExpanding $ a(2a + b) $: $ 2a^2 + ab $. Then subtract $ 2a^2 $, so $ 2a^2 + ab - 2a^2 = ab $. Then add $ ab $, so $ ab + ab = 2ab $. Yes, that seems right. So the expression simplifies to $ 2ab $.\n\nAlright, so now I need to find the number of positive divisors of $ 2ab $. Since $ a $ and $ b $ are primes greater than 2, they are both odd primes. Let me recall that the number of divisors of a number is found by taking its prime factorization, adding one to each of the exponents, and multiplying those together.\n\nSo first, let me write the prime factorization of $ 2ab $. Since 2 is a prime number, and $ a $ and $ b $ are different primes, all three primes are distinct. Therefore, the prime factors of $ 2ab $ are 2, $ a $, and $ b $. Each of these primes has an exponent of 1 in the factorization. So the prime factorization is $ 2^1 \\times a^1 \\times b^1 $.\n\nTo find the number of divisors, I take each exponent (which are all 1s), add 1 to them, and multiply. That would be $ (1 + 1)(1 + 1)(1 + 1) = 2 \\times 2 \\times 2 = 8 $. Therefore, there are 8 positive divisors.\n\nBut let me verify this with an example to make sure I haven&#39;t made a mistake. Let me pick specific primes for $ a $ and $ b $. Let&#39;s take $ a = 3 $ and $ b = 5 $, which are both primes greater than 2 and different.\n\nCalculating $ 2ab $: $ 2 \\times 3 \\times 5 = 30 $. Now, the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30. That&#39;s 8 divisors. Yep, that matches the calculation. Let me try another example to be safe. Let me take $ a = 5 $, $ b = 7 $. Then $ 2ab = 2 \\times 5 \\times 7 = 70 $. Divisors of 70: 1, 2, 5, 7, 10, 14, 35, 70. Again, 8 divisors. Okay, so that seems consistent.\n\nBut let me think again if there&#39;s any possibility that 2 could be equal to $ a $ or $ b $. However, the problem states that $ a $ and $ b $ are primes greater than 2, so they are odd primes. Therefore, 2 is not among them. Therefore, 2, $ a $, and $ b $ are distinct primes. Therefore, the prime factorization is indeed three distinct primes each to the first power, leading to 2&times;2&times;2=8 divisors.\n\nBut let me check if there&#39;s a case where maybe $ a $ or $ b $ is 2. But the problem says they are greater than 2, so they can&#39;t be. Therefore, my reasoning holds.\n\nTherefore, the number of whole-number divisors is 8. Therefore, the answer is 8, which in boxed form is \\boxed{8}.\n\nWait, but let me just check once more. Suppose someone might think that maybe the original expression simplifies differently? Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nFirst term: $ a(2a + b) = 2a^2 + ab $.\n\nSubtracting $ 2a^2 $: $ 2a^2 + ab - 2a^2 = ab $.\n\nAdding $ ab $: $ ab + ab = 2ab $. Yes, that&#39;s correct. So the expression simplifies to 2ab. So no issues there.\n\nAlternatively, maybe someone might misread the original problem? Let me check again. The problem says: \"the integer $ a(2a + b) - 2a^2 + ab $\". So yes, that&#39;s how it&#39;s written. So the steps are correct.\n\nTherefore, I think my answer is correct. The number of divisors is 8.\n\n**Final Answer**\n\\boxed{8}\n</think>\n\nWe are given an expression involving two distinct prime numbers $ a $ and $ b $, both greater than 2, and asked to find the number of whole-number divisors of the integer:\n\n$$\na(2a + b) - 2a^2 + ab\n$$\n\n---\n\n### Step 1: Simplify the Expression\n\nStart by expanding the first term:\n\n$$\na(2a + b) = 2a^2 + ab\n$$\n\nNow substitute this back into the full expression:\n\n$$\n2a^2 + ab - 2a^2 + ab\n$$\n\nSimplify by combining like terms:\n\n- $ 2a^2 - 2a^2 = 0 $\n- $ ab + ab = 2ab $\n\nSo the entire expression simplifies to:\n\n$$\n2ab\n$$\n\n---\n\n### Step 2: Prime Factorization of $ 2ab $\n\nSince $ a $ and $ b $ are distinct prime numbers greater than 2, and 2 is also a prime, the expression $ 2ab $ is the product of three **distinct** primes:\n\n$$\n2ab = 2^1 \\cdot a^1 \\cdot b^1\n$$\n\n---\n\n### Step 3: Count the Number of Divisors\n\nThe number of positive divisors of a number is determined by taking the product of one more than each exponent in its prime factorization.\n\nHere, the exponents are all 1:\n\n$$\n(1 + 1)(1 + 1)(1 + 1) = 2 \\cdot 2 \\cdot 2 = 8\n$$\n\n---\n\n### Final Answer\n\n$$\n\\boxed{8}\n$$", "role": "assistant", "reasoning_content": ""}, "review": {"gold": "8", "pred": "8", "result": true}}], "created": 1755157209, "model": "Qwen3-32B", "object": "chat.completion", "usage": {"completion_tokens": 1627, "prompt_tokens": 68, "total_tokens": 1695}, "model_spec": {"api_url": "http://0.0.0.0:9009/v1/chat/completions", "model_id": "Qwen3-32B", "api_key": "EMPTY"}, "answer_id": "answer-1a07ae97260436f698e63d4620d7cff0", "subset_name": "default", "raw_input": {"problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json"}, "origin_prompt": {"data": ["Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?\nPlease reason step by step, and put your final answer within \\boxed{}."], "system_prompt": null, "raw_input": {"problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json"}, "index": 0}, "reviewed": true, "review_id": "review-307a3dc16716316d92e62e1f3ae09703", "reviewer_spec": {"metric": ["AveragePass@1"], "reviewer": ["Evaluator"], "revision": ["default"]}, "review_time": 1755194244.6042051} 写一个脚本,将以上字符串格式化为以下json格式 { "id": "cmpl-e759f3d8-78e1-11f0-b2b4-1a85109d8f07", "choices": [ { "finish_reason": "stop", "index": 0, "message": { "content": "<think>\nOkay, so I need to figure out how many whole-number divisors there are for the integer given by the expression $ a(2a + b) - 2a^2 + ab $, where $ a $ and $ b $ are different prime numbers greater than 2. Let me start by simplifying the expression step by step.\n\nFirst, let me write down the expression again to make sure I have it right: $ a(2a + b) - 2a^2 + ab $. Let me expand the first term, which is $ a(2a + b) $. If I distribute the $ a $, that becomes $ 2a^2 + ab $. So substituting that back into the original expression, we have:\n\n$ 2a^2 + ab - 2a^2 + ab $.\n\nNow let me combine like terms. The $ 2a^2 $ and $ -2a^2 $ cancel each other out, right? So that leaves me with $ ab + ab $, which is $ 2ab $. So the entire expression simplifies to $ 2ab $. \n\nWait, so the problem is asking for the number of whole-number divisors of $ 2ab $, where $ a $ and $ b $ are different primes greater than 2. Let me confirm that I simplified correctly. Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nExpanding $ a(2a + b) $: $ 2a^2 + ab $. Then subtract $ 2a^2 $, so $ 2a^2 + ab - 2a^2 = ab $. Then add $ ab $, so $ ab + ab = 2ab $. Yes, that seems right. So the expression simplifies to $ 2ab $.\n\nAlright, so now I need to find the number of positive divisors of $ 2ab $. Since $ a $ and $ b $ are primes greater than 2, they are both odd primes. Let me recall that the number of divisors of a number is found by taking its prime factorization, adding one to each of the exponents, and multiplying those together.\n\nSo first, let me write the prime factorization of $ 2ab $. Since 2 is a prime number, and $ a $ and $ b $ are different primes, all three primes are distinct. Therefore, the prime factors of $ 2ab $ are 2, $ a $, and $ b $. Each of these primes has an exponent of 1 in the factorization. So the prime factorization is $ 2^1 \\times a^1 \\times b^1 $.\n\nTo find the number of divisors, I take each exponent (which are all 1s), add 1 to them, and multiply. That would be $ (1 + 1)(1 + 1)(1 + 1) = 2 \\times 2 \\times 2 = 8 $. Therefore, there are 8 positive divisors.\n\nBut let me verify this with an example to make sure I haven&#39;t made a mistake. Let me pick specific primes for $ a $ and $ b $. Let&#39;s take $ a = 3 $ and $ b = 5 $, which are both primes greater than 2 and different.\n\nCalculating $ 2ab $: $ 2 \\times 3 \\times 5 = 30 $. Now, the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30. That&#39;s 8 divisors. Yep, that matches the calculation. Let me try another example to be safe. Let me take $ a = 5 $, $ b = 7 $. Then $ 2ab = 2 \\times 5 \\times 7 = 70 $. Divisors of 70: 1, 2, 5, 7, 10, 14, 35, 70. Again, 8 divisors. Okay, so that seems consistent.\n\nBut let me think again if there&#39;s any possibility that 2 could be equal to $ a $ or $ b $. However, the problem states that $ a $ and $ b $ are primes greater than 2, so they are odd primes. Therefore, 2 is not among them. Therefore, 2, $ a $, and $ b $ are distinct primes. Therefore, the prime factorization is indeed three distinct primes each to the first power, leading to 2&times;2&times;2=8 divisors.\n\nBut let me check if there&#39;s a case where maybe $ a $ or $ b $ is 2. But the problem says they are greater than 2, so they can&#39;t be. Therefore, my reasoning holds.\n\nTherefore, the number of whole-number divisors is 8. Therefore, the answer is 8, which in boxed form is \\boxed{8}.\n\nWait, but let me just check once more. Suppose someone might think that maybe the original expression simplifies differently? Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nFirst term: $ a(2a + b) = 2a^2 + ab $.\n\nSubtracting $ 2a^2 $: $ 2a^2 + ab - 2a^2 = ab $.\n\nAdding $ ab $: $ ab + ab = 2ab $. Yes, that&#39;s correct. So the expression simplifies to 2ab. So no issues there.\n\nAlternatively, maybe someone might misread the original problem? Let me check again. The problem says: \"the integer $ a(2a + b) - 2a^2 + ab $\". So yes, that&#39;s how it&#39;s written. So the steps are correct.\n\nTherefore, I think my answer is correct. The number of divisors is 8.\n\n**Final Answer**\n\\boxed{8}\n</think>\n\nWe are given an expression involving two distinct prime numbers $ a $ and $ b $, both greater than 2, and asked to find the number of whole-number divisors of the integer:\n\n$$\na(2a + b) - 2a^2 + ab\n$$\n\n---\n\n### Step 1: Simplify the Expression\n\nStart by expanding the first term:\n\n$$\na(2a + b) = 2a^2 + ab\n$$\n\nNow substitute this back into the full expression:\n\n$$\n2a^2 + ab - 2a^2 + ab\n$$\n\nSimplify by combining like terms:\n\n- $ 2a^2 - 2a^2 = 0 $\n- $ ab + ab = 2ab $\n\nSo the entire expression simplifies to:\n\n$$\n2ab\n$$\n\n---\n\n### Step 2: Prime Factorization of $ 2ab $\n\nSince $ a $ and $ b $ are distinct prime numbers greater than 2, and 2 is also a prime, the expression $ 2ab $ is the product of three **distinct** primes:\n\n$$\n2ab = 2^1 \\cdot a^1 \\cdot b^1\n$$\n\n---\n\n### Step 3: Count the Number of Divisors\n\nThe number of positive divisors of a number is determined by taking the product of one more than each exponent in its prime factorization.\n\nHere, the exponents are all 1:\n\n$$\n(1 + 1)(1 + 1)(1 + 1) = 2 \\cdot 2 \\cdot 2 = 8\n$$\n\n---\n\n### Final Answer\n\n$$\n\\boxed{8}\n$$", "role": "assistant", "reasoning_content": "" }, "review": { "gold": "8", "pred": "8", "result": true } } ], "created": 1755157209, "model": "Qwen3-32B", "object": "chat.completion", "usage": { "completion_tokens": 1627, "prompt_tokens": 68, "total_tokens": 1695 }, "model_spec": { "api_url": "http://0.0.0.0:9009/v1/chat/completions", "model_id": "Qwen3-32B", "api_key": "EMPTY" }, "answer_id": "answer-1a07ae97260436f698e63d4620d7cff0", "subset_name": "default", "raw_input": { "problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json" }, "origin_prompt": { "data": [ "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?\nPlease reason step by step, and put your final answer within \\boxed{}." ], "system_prompt": null, "raw_input": { "problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json" }, "index": 0 }, "reviewed": true, "review_id": "review-307a3dc16716316d92e62e1f3ae09703", "reviewer_spec": { "metric": [ "AveragePass@1" ], "reviewer": [ "Evaluator" ], "revision": [ "default" ] }, "review_time": 1755194244.6042051 }
最新发布
08-17
{ "id": "cmpl-e759f3d8-78e1-11f0-b2b4-1a85109d8f07", "choices": [ { "finish_reason": "stop", "index": 0, "message": { "content": "<think>\nOkay, so I need to figure out how many whole-number divisors there are for the integer given by the expression $ a(2a + b) - 2a^2 + ab $, where $ a $ and $ b $ are different prime numbers greater than 2. Let me start by simplifying the expression step by step.\n\nFirst, let me write down the expression again to make sure I have it right: $ a(2a + b) - 2a^2 + ab $. Let me expand the first term, which is $ a(2a + b) $. If I distribute the $ a $, that becomes $ 2a^2 + ab $. So substituting that back into the original expression, we have:\n\n$ 2a^2 + ab - 2a^2 + ab $.\n\nNow let me combine like terms. The $ 2a^2 $ and $ -2a^2 $ cancel each other out, right? So that leaves me with $ ab + ab $, which is $ 2ab $. So the entire expression simplifies to $ 2ab $. \n\nWait, so the problem is asking for the number of whole-number divisors of $ 2ab $, where $ a $ and $ b $ are different primes greater than 2. Let me confirm that I simplified correctly. Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nExpanding $ a(2a + b) $: $ 2a^2 + ab $. Then subtract $ 2a^2 $, so $ 2a^2 + ab - 2a^2 = ab $. Then add $ ab $, so $ ab + ab = 2ab $. Yes, that seems right. So the expression simplifies to $ 2ab $.\n\nAlright, so now I need to find the number of positive divisors of $ 2ab $. Since $ a $ and $ b $ are primes greater than 2, they are both odd primes. Let me recall that the number of divisors of a number is found by taking its prime factorization, adding one to each of the exponents, and multiplying those together.\n\nSo first, let me write the prime factorization of $ 2ab $. Since 2 is a prime number, and $ a $ and $ b $ are different primes, all three primes are distinct. Therefore, the prime factors of $ 2ab $ are 2, $ a $, and $ b $. Each of these primes has an exponent of 1 in the factorization. So the prime factorization is $ 2^1 \\times a^1 \\times b^1 $.\n\nTo find the number of divisors, I take each exponent (which are all 1s), add 1 to them, and multiply. That would be $ (1 + 1)(1 + 1)(1 + 1) = 2 \\times 2 \\times 2 = 8 $. Therefore, there are 8 positive divisors.\n\nBut let me verify this with an example to make sure I haven&#39;t made a mistake. Let me pick specific primes for $ a $ and $ b $. Let&#39;s take $ a = 3 $ and $ b = 5 $, which are both primes greater than 2 and different.\n\nCalculating $ 2ab $: $ 2 \\times 3 \\times 5 = 30 $. Now, the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30. That&#39;s 8 divisors. Yep, that matches the calculation. Let me try another example to be safe. Let me take $ a = 5 $, $ b = 7 $. Then $ 2ab = 2 \\times 5 \\times 7 = 70 $. Divisors of 70: 1, 2, 5, 7, 10, 14, 35, 70. Again, 8 divisors. Okay, so that seems consistent.\n\nBut let me think again if there&#39;s any possibility that 2 could be equal to $ a $ or $ b $. However, the problem states that $ a $ and $ b $ are primes greater than 2, so they are odd primes. Therefore, 2 is not among them. Therefore, 2, $ a $, and $ b $ are distinct primes. Therefore, the prime factorization is indeed three distinct primes each to the first power, leading to 2&times;2&times;2=8 divisors.\n\nBut let me check if there&#39;s a case where maybe $ a $ or $ b $ is 2. But the problem says they are greater than 2, so they can&#39;t be. Therefore, my reasoning holds.\n\nTherefore, the number of whole-number divisors is 8. Therefore, the answer is 8, which in boxed form is \\boxed{8}.\n\nWait, but let me just check once more. Suppose someone might think that maybe the original expression simplifies differently? Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nFirst term: $ a(2a + b) = 2a^2 + ab $.\n\nSubtracting $ 2a^2 $: $ 2a^2 + ab - 2a^2 = ab $.\n\nAdding $ ab $: $ ab + ab = 2ab $. Yes, that&#39;s correct. So the expression simplifies to 2ab. So no issues there.\n\nAlternatively, maybe someone might misread the original problem? Let me check again. The problem says: \"the integer $ a(2a + b) - 2a^2 + ab $\". So yes, that&#39;s how it&#39;s written. So the steps are correct.\n\nTherefore, I think my answer is correct. The number of divisors is 8.\n\n**Final Answer**\n\\boxed{8}\n</think>\n\nWe are given an expression involving two distinct prime numbers $ a $ and $ b $, both greater than 2, and asked to find the number of whole-number divisors of the integer:\n\n$$\na(2a + b) - 2a^2 + ab\n$$\n\n---\n\n### Step 1: Simplify the Expression\n\nStart by expanding the first term:\n\n$$\na(2a + b) = 2a^2 + ab\n$$\n\nNow substitute this back into the full expression:\n\n$$\n2a^2 + ab - 2a^2 + ab\n$$\n\nSimplify by combining like terms:\n\n- $ 2a^2 - 2a^2 = 0 $\n- $ ab + ab = 2ab $\n\nSo the entire expression simplifies to:\n\n$$\n2ab\n$$\n\n---\n\n### Step 2: Prime Factorization of $ 2ab $\n\nSince $ a $ and $ b $ are distinct prime numbers greater than 2, and 2 is also a prime, the expression $ 2ab $ is the product of three **distinct** primes:\n\n$$\n2ab = 2^1 \\cdot a^1 \\cdot b^1\n$$\n\n---\n\n### Step 3: Count the Number of Divisors\n\nThe number of positive divisors of a number is determined by taking the product of one more than each exponent in its prime factorization.\n\nHere, the exponents are all 1:\n\n$$\n(1 + 1)(1 + 1)(1 + 1) = 2 \\cdot 2 \\cdot 2 = 8\n$$\n\n---\n\n### Final Answer\n\n$$\n\\boxed{8}\n$$", "role": "assistant", "reasoning_content": "" }, "review": { "gold": "8", "pred": "8", "result": true } } ], "created": 1755157209, "model": "Qwen3-32B", "object": "chat.completion", "usage": { "completion_tokens": 1627, "prompt_tokens": 68, "total_tokens": 1695 }, "model_spec": { "api_url": "http://0.0.0.0:9009/v1/chat/completions", "model_id": "Qwen3-32B", "api_key": "EMPTY" }, "answer_id": "answer-1a07ae97260436f698e63d4620d7cff0", "subset_name": "default", "raw_input": { "problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json" }, "origin_prompt": { "data": [ "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?\nPlease reason step by step, and put your final answer within \\boxed{}." ], "system_prompt": null, "raw_input": { "problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json" }, "index": 0 }, "reviewed": true, "review_id": "review-307a3dc16716316d92e62e1f3ae09703", "reviewer_spec": { "metric": [ "AveragePass@1" ], "reviewer": [ "Evaluator" ], "revision": [ "default" ] }, "review_time": 1755194244.6042051 } 将此json按以上要求生成csv
08-17
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值