How many integers can you find
Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 5517 Accepted Submission(s): 1580
Problem Description
Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
Input
There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
Output
For each case, output the number.
Sample Input
12 2 2 3
Sample Output
7
Author
wangye
Source
Recommend
wangye
题目意思是给出数n和一个包含m个数的集合,要求的是小于n,且是集合内任意元素的倍数的数有多少。(有点绕,多读两遍就理解了)。
这个题目要用到的原理是容斥原理,什么是容斥原理呢?大概学过集合或者概率论的都知道吧!
容斥原理:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
本题的关键是要如何实现容斥原理,最简单的就是直接暴力,数据比较水能过,还有一种方法就是用dfs优化。
两种方法均可,只是时间复杂度的大小问题。
此题还有一点点小坑,稍不细心的人就可能掉进去(比如我……T_T……),集合中元素可能包含0,要先筛选一遍才能操作……不多说了,直接上代码:
/*
Author:ZXPxx
Memory: 1616 KB Time: 202 MS
Language: C++ Result: Accepted
*/
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <vector>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
const int maxn = 5e5 + 5;
const int inf = 0x3f3f3f3f;
int a[130],n,m,ans,p,cur;
int gcd(int a,int b) {
return !b ? a:gcd(b,a%b);
}
int lcm(int a,int b) {
return a/gcd(a,b)*b;
}
void dfs(int i,int flag,int k)
{
k=lcm(a[i],k);
ans+=n/(k*flag);
for(int j=i+1;j<cur;j++)
dfs(j,-flag,k);
}
int main() {
while(~scanf("%d %d",&n,&m)) {
cur=0;
for(int i=0; i<m; i++) {
scanf("%d",&p);
if(p)
a[cur++]=p;
}
ans=0;n--;
for(int i=0; i < cur; i++) {
dfs(i,1,a[i]);
}
printf("%d\n",ans);
}
return 0;
}
爆搜的代码也来一发。。。
/*
Author:ZXPxx
Memory: 1648 KB Time: 998 MS
Language: C++ Result: Accepted
*/
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <vector>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
const int maxn = 5e5 + 5;
const int inf = 0x3f3f3f3f;
int a[130],m,n,p,cur,ans;
int gcd(int a,int b) {
return !b ? a:gcd(b,a%b);
}
int lcm(int a,int b) {
return a/gcd(a,b)*b;
}
int main() {
while(~scanf("%d %d",&n,&m)) {
n--; cur=0; ans=0;
for(int i=0; i<m; i++) {
scanf("%d",&p);
if(p) a[cur++]=p;
}
for(int i= 1;i < pow(2,cur); i++) {
int cnt=0,flag=0,k=1;
for(int j = 0; j < cur; j++) {
if(i>>j & 1) {
k=lcm(k,a[j]);
if(k>n) {
flag=1;
break;
}
cnt++;
}
}
if(flag) continue;
if(cnt%2)
ans+=n/k;
else
ans-=n/k;
}
printf("%d\n",ans);
}
return 0;
}

本题探讨了如何利用容斥原理找出小于给定数值N的所有整数中,可以被特定集合内的任意整数整除的数量。通过两种方法解决这一问题:直接暴力搜索与DFS优化。
1万+

被折叠的 条评论
为什么被折叠?



