矩阵乘法:
def square_matrix_multiply(A,B):
C = []
n = len(A)
C = [[0 for col in range(n)] for row in range(n)]
for i in range(0,n):
for j in range(0,n):
for k in range(0,n):
C[i][j]=C[i][j]+A[i][k]*B[k][j]
return C一个简单的分治算法:
def square_matrix_multiply_recursive(A,B):
n = len(A)
C = [[0 for col in range(n)] for row in range(n)]
if n == 1:
C[0][0] = A[0][0]*B[0][0]
else:
(A11,A12,A21,A22) = partition_matrix(A)
(B11,B12,B21,B22) = partition_matrix(B)
(C11,C12,C21,C22) = partition_matrix(C)
C11 = add_matrix(square_matrix_multiply_recursive(A11,B11),square_matrix_multiply_recursive(A12,B21))
C12 = add_matrix(square_matrix_multiply_recursive(A11,B12),square_matrix_multiply_recursive(A12,B22))
C21 = add_matrix(square_matrix_multiply_recursive(A21,B11),square_matrix_multiply_recursive(A22,B21))
C22 = add_matrix(square_matrix_multiply_recursive(A21,B12),square_matrix_multiply_recursive(A22,B22))
C = merge_matrix(C11,C12,C21,C22)
return C
def partition_matrix(A):
n = len(A)
n2 = int(n/2)
A11 = [[0 for col in range(n2)] for row in range(n2)]
A12 = [[0 for col in range(n2)] for row in range(n2)]
A21 = [[0 for col in range(n2)] for row in range(n2)]
A22 = [[0 for col in range(n2)] for row in range(n2)]
for i in range(0,n2):
for j in range(0,n2):
A11[i][j] = A[i][j]
A12[i][j] = A[i][j+n2]
A21[i][j] = A[i+n2][j]
A22[i][j] = A[i+n2][j+n2]
return (A11,A12,A21,A22)
def merge_matrix(A11,A12,A21,A22):
n2 = len(A11)
n = 2*n2
A = [[0 for col in range(n)] for row in range(n)]
for i in range (0,n):
for j in range (0,n):
if i <= (n2-1) and j <= (n2-1):
A[i][j] = A11[i][j]
elif i <= (n2-1) and j > (n2-1):
A[i][j] = A12[i][j-n2]
elif i > (n2-1) and j <= (n2-1):
A[i][j] = A21[i-n2][j]
else:
A[i][j] = A22[i-n2][j-n2]
return A
def add_matrix(A,B):
n = len(A)
C = [[0 for col in range(n)] for row in range(n)]
for i in range(0,n):
for j in range(0,n):
C[i][j] = A[i][j]+B[i][j]
return C1.partition_matrix的作用是把矩阵A分解成四个4个n/2×n/2的子矩阵。
2.merge_matrix的作用是把四个4个n/2×n/2的子矩阵合并为一个n×n的矩阵。
3.add_matrix的作用是计算矩阵A和B的加。
本文介绍了一种实现矩阵乘法的方法,并提供了一个简单的分治算法来优化大规模矩阵的运算过程。通过递归地将矩阵分解为更小的部分进行计算,该算法有效地减少了计算复杂度。
630

被折叠的 条评论
为什么被折叠?



