Morris Traversal 二叉树遍历算法

本文介绍了一种利用Morris遍历算法实现二叉树中序与前序遍历的方法,该算法在保持O(n)的时间复杂度的同时,实现了O(1)的空间复杂度。通过利用线索二叉树的概念,Morris遍历避免了使用额外的栈空间,而是在遍历过程中动态调整节点指针。文章详细阐述了中序与前序遍历的实现步骤,并提供了C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们知道,对于二叉树遍历可以用递归方式和非递归方式,时间复杂度和空间复杂度均为O(n). 但如果要求空间复杂度为O(1),显然这两种方式均不满足。这里我们有一种Morris遍历算法,使得时间复杂度为O(n),空间复杂度为O(1)。

要使用O(1)空间进行遍历,最大的难点在于,遍历到子节点的时候怎样重新返回到父节点(假设节点中没有指向父节点的指针),由于不能用栈作为辅助空间。为了解决这个问题,Morris算法用到了线索二叉树(threaded binary tree)的概念。在Morris方法中不需要为每个节点额外分配指针指向其前驱(predecessor)和后继节点(successor),只需要利用叶子节点中的右指针指向某种顺序遍历下的前驱节点或后继节点就可以了。

它使用二叉树中的叶节点的right指针来保存后面将要访问的节点的信息,当这个right指针使用完成之后,再将它置为NULL,但是在访问过程中有些节点会访问两次,所以与递归的空间换时间的思路不同,Morris则是使用时间换空间的思想。

二叉树节点定义如下:

 //Definition for a binary tree node.
 struct TreeNode {
     int val;
     TreeNode *left;
     TreeNode *right;
     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 };

对于中序遍历:
步骤:
1. 如果当前节点的左孩子为空,则输出当前节点并将其右孩子作为当前节点。
2. 如果当前节点的左孩子不为空,在当前节点的左子树中找到当前节点在中序遍历下的前驱节点。
a) 如果前驱节点的右孩子为空,将它的右孩子设置为当前节点。当前节点更新为当前节点的左孩子。
b) 如果前驱节点的右孩子为当前节点,将它的右孩子重新设为空(恢复树的形状)。输出当前节点。当前节点更新为当前节点的右孩子。
3. 重复以上1、2直到当前节点为空。

下图为每一步迭代的结果(从左至右,从上到下),cur代表当前节点,深色节点表示该节点已输出。
这里写图片描述

C++代码实现:

void inorderMorrisTraversal(TreeNode *root) {
    TreeNode *cur = root, *prev = NULL;
    while (cur != NULL)
    {
        if (cur->left == NULL)         
        {
            cout<<cur->val<<endl;
            cur = cur->right;
        }
        else
        {
            // find predecessor
            prev = cur->left;
            while (prev->right != NULL && prev->right != cur)
                prev = prev->right;

            if (prev->right == NULL)   // 对应情况2.a
            {
                prev->right = cur;
                cur = cur->left;
            }
            else                       // 对应情况2.b
            {
                prev->right = NULL;
                cout<<cur->val;
                cur = cur->right;
            }
        }
    }
}

二、前序遍历
前序遍历与中序遍历相似,代码上只有一行不同,不同就在于输出的顺序。
步骤:

  1. 如果当前节点的左孩子为空,则输出当前节点并将其右孩子作为当前节点。
  2. 如果当前节点的左孩子不为空,在当前节点的左子树中找到当前节点在中序遍历下的前驱节点。
    a) 如果前驱节点的右孩子为空,将它的右孩子设置为当前节点。输出当前节点(在这里输出,这是与中序遍历唯一一点不同)。当前节点更新为当前节点的左孩子。
    b) 如果前驱节点的右孩子为当前节点,将它的右孩子重新设为空。当前节点更新为当前节点的右孩子。
  3. 重复以上1、2直到当前节点为空。

这里写图片描述

C++代码实现:

void preorderMorrisTraversal(TreeNode *root) {
    TreeNode *cur = root, *prev = NULL;
    while (cur != NULL)
    {
        if (cur->left == NULL)
        {
            cout<<cur->val;
            cur = cur->right;
        }
        else
        {
            prev = cur->left;
            while (prev->right != NULL && prev->right != cur)
                prev = prev->right;

            if (prev->right == NULL)
            {
                cout<<cur->val;  // the only difference with inorder-traversal
                prev->right = cur;
                cur = cur->left;
            }
            else
            {
                prev->right = NULL;
                cur = cur->right;
            }
        }
    }
}

转载自:http://www.cnblogs.com/AnnieKim/archive/2013/06/15/MorrisTraversal.html

资源下载链接为: https://pan.quark.cn/s/67c535f75d4c 在机器人技术中,轨迹规划是实现机器人从一个位置平稳高效移动到另一个位置的核心环节。本资源提供了一套基于 MATLAB 的机器人轨迹规划程序,涵盖了关节空间和笛卡尔空间两种规划方式。MATLAB 是一种强大的数值计算与可视化工具,凭借其灵活易用的特点,常被用于机器人控制算法的开发与仿真。 关节空间轨迹规划主要关注机器人各关节角度的变化,生成从初始配置到目标配置的连续路径。其关键知识点包括: 关节变量:指机器人各关节的旋转角度或伸缩长度。 运动学逆解:通过数学方法从末端执行器的目标位置反推关节变量。 路径平滑:确保关节变量轨迹连续且无抖动,常用方法有 S 型曲线拟合、多项式插值等。 速度和加速度限制:考虑关节的实际物理限制,确保轨迹在允许的动态范围内。 碰撞避免:在规划过程中避免关节与其他物体发生碰撞。 笛卡尔空间轨迹规划直接处理机器人末端执行器在工作空间中的位置和姿态变化,涉及以下内容: 工作空间:机器人可到达的所有三维空间点的集合。 路径规划:在工作空间中找到一条从起点到终点的无碰撞路径。 障碍物表示:采用二维或三维网格、Voronoi 图、Octree 等数据结构表示工作空间中的障碍物。 轨迹生成:通过样条曲线、直线插值等方法生成平滑路径。 实时更新:在规划过程中实时检测并避开新出现的障碍物。 在 MATLAB 中实现上述规划方法,可以借助其内置函数和工具箱: 优化工具箱:用于解决运动学逆解和路径规划中的优化问题。 Simulink:可视化建模环境,适合构建和仿真复杂的控制系统。 ODE 求解器:如 ode45,用于求解机器人动力学方程和轨迹执行过程中的运动学问题。 在实际应用中,通常会结合关节空间和笛卡尔空间的规划方法。先在关节空间生成平滑轨迹,再通过运动学正解将关节轨迹转换为笛卡
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值