Language:
Maximum sum
Description
Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below:
Your task is to calculate d(A). Input
The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input.
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case. Output
Print exactly one line for each test case. The line should contain the integer d(A).
Sample Input 1 10 1 -1 2 2 3 -3 4 -4 5 -5 Sample Output 13 Hint
In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer.
Huge input,scanf is recommended. Source
POJ Contest,Author:Mathematica@ZSU
|
刚开始对于这个题一点思路都木有,还好有大神教,明白了这种题该怎么做。由于这个题是求两个集合的最大值,所以我们可以分别从前边和后边去求每个集合的最大值,然后再去枚举i,看看从哪里断开能使前边的集合最大值加上后边的集合最大值是最大。
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#define LL long long
using namespace std;
LL dp[2][50400]; //一般动态规划的题都是开longlong整型的
LL st[50400];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int i,n;
LL MAX;
scanf("%d",&n);
for(i=1; i<=n; i++)
scanf("%lld",&st[i]);
dp[0][1]=st[1];
for(i=2; i<=n; i++)
dp[0][i]=max(dp[0][i-1],(LL)0)+st[i]; //dp[0][i]代表从前边开始遍历,遍历第一遍,求出1~i的值
for(i=2; i<=n; i++)
dp[0][i]=max(dp[0][i],dp[0][i-1]); //遍历第二遍,求出1~i的最大值
dp[1][n]=st[n]; //dp[1][i]代表从后边开始遍历
for(i=n-1; i>=1; i--)
dp[1][i]=max(dp[1][i+1],(LL)0)+st[i];
for(i=n-1; i>=1; i--)
dp[1][i]=max(dp[1][i],dp[1][i+1]);
MAX=dp[0][1]+dp[1][2]; //假设从i=1断开是最大
for(i=2; i<n; i++) //开始枚举
MAX=max(MAX,dp[0][i]+dp[1][i+1]);
printf("%lld\n",MAX);
}
return 0;
}