hdu 2680 Choose the best route

本文详细解析了一个关于寻找从多个起点到单一终点的最短路径问题,并提供了一段实现该算法的C++代码示例。文章通过具体示例介绍了如何初始化距离矩阵、如何更新最短路径,最终求得最少时间成本。

点击打开链接

Choose the best route

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 16181    Accepted Submission(s): 5271


Problem Description
One day , Kiki wants to visit one of her friends. As she is liable to carsickness , she wants to arrive at her friend’s home as soon as possible . Now give you a map of the city’s traffic route, and the stations which are near Kiki’s home so that she can take. You may suppose Kiki can change the bus at any station. Please find out the least time Kiki needs to spend. To make it easy, if the city have n bus stations ,the stations will been expressed as an integer 1,2,3…n.
 

Input
There are several test cases. 
Each case begins with three integers n, m and s,(n<1000,m<20000,1=<s<=n) n stands for the number of bus stations in this city and m stands for the number of directed ways between bus stations .(Maybe there are several ways between two bus stations .) s stands for the bus station that near Kiki’s friend’s home.
Then follow m lines ,each line contains three integers p , q , t (0<t<=1000). means from station p to station q there is a way and it will costs t minutes .
Then a line with an integer w(0<w<n), means the number of stations Kiki can take at the beginning. Then follows w integers stands for these stations.
 

Output
The output contains one line for each data set : the least time Kiki needs to spend ,if it’s impossible to find such a route ,just output “-1”.
 

Sample Input
  
5 8 5 1 2 2 1 5 3 1 3 4 2 4 7 2 5 6 2 3 5 3 5 1 4 5 1 2 2 3 4 3 4 1 2 3 1 3 4 2 3 2 1 1
 

Sample Output
  
1 -1
 
有多个起点,只有一个终点,问最短路径,还是单向图。

设起源点0,0到多个起点的距离为0,就把问题转化的简单了。

hdu 2066这个最全,http://blog.youkuaiyun.com/zhang__liuchen/article/details/78580323,这个会了的话,这个题就简单了。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int inf=0x3f3f3f3f;
int cost[1010][1010];
int dp[1010];
int n,m,s;
void Dijkstra()
{
	int vis[1010]={0};
	int i,j,pos,mi;
	for(i=0;i<=n;i++)
		dp[i]=cost[0][i];
	dp[0]=0;
	vis[0]=1;
	for(i=0;i<=n;i++)
	{
		mi=inf;
		for(j=0;j<=n;j++)
		{
			if(!vis[j]&&mi>dp[j])
			{
				pos=j;
				mi=dp[j];
			}
		}
		if(mi==inf)
			break;
		vis[pos]=1;
		for(j=0;j<=n;j++)
		{
			if(dp[j]>dp[pos]+cost[pos][j]&&!vis[j])
				dp[j]=dp[pos]+cost[pos][j];
		}
	}
}
int main()
{
	while(scanf("%d%d%d",&n,&m,&s)!=EOF)
	{
		for(int i=0;i<=n;i++)
		{
			for(int j=0;j<=n;j++)
				cost[i][j]=dp[i]=inf;
			cost[i][i]=0;
		}
		int p,q,t;
		while(m--)
		{
			scanf("%d%d%d",&p,&q,&t);
			if(cost[p][q]>t)//竟然必须加这个
				cost[p][q]=t;
		}
		int w,cnt;
		scanf("%d",&w);
		while(w--)
		{
			scanf("%d",&cnt);
			cost[0][cnt]=0;
		}
		Dijkstra();
		if(dp[s]==inf)
			printf("-1\n");
		else
			printf("%d\n",dp[s]);
	}
	return 0;
}



参考博客

http://blog.youkuaiyun.com/niushuai666/article/details/6794343



【直流微电网】径向直流微电网的状态空间建模与线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模与线性化方法,重点提出了一种基于耦合DC-DC变换器状态空间平均模型的建模策略。该方法通过对系统中多个相互耦合的DC-DC变换器进行统一建模,构建出整个微电网的集中状态空间模型,并在此基础上实施线性化处理,便于后续的小信号分析与稳定性研究。文中详细阐述了建模过程中的关键步骤,包括电路拓扑分析、状态变量选取、平均化处理以及雅可比矩阵的推导,终通过Matlab代码实现模型仿真验证,展示了该方法在动态响应分析和控制器设计中的有效性。; 适合人群:具备电力电子、自动控制理论基础,熟悉Matlab/Simulink仿真工具,从事微电网、新能源系统建模与控制研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网中多变换器系统的统一建模方法;②理解状态空间平均法在非线性电力电子系统中的应用;③实现系统线性化并用于稳定性分析与控制器设计;④通过Matlab代码复现和扩展模型,服务于科研仿真与教学实践。; 阅读建议:建议读者结合Matlab代码逐步理解建模流程,重点关注状态变量的选择与平均化处理的数学推导,同时可尝试修改系统参数或拓扑结构以加深对模型通用性和适应性的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值