hdu 1711 Number Sequence

本文介绍了一种使用KMP算法解决特定数值序列匹配问题的方法。给定两个数列,任务是找到第一个数列中是否存在与第二个数列完全相同的子序列及起始位置。通过构造跳转表(next数组)来加速匹配过程,并详细展示了如何实现这一算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击打开链接

Number Sequence

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 31372    Accepted Submission(s): 13170


Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
 

Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
 

Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
 

Sample Input
  
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
 

Sample Output
  
6 -1

KMP算法,得到跳转表(next数组),然后进行匹配。

#include <iostream>
#include <cstring>
#include <cstdio>
const int M=1e4;
const int N=1e6;
int Next[M+10];
int str[N+10];
int mo[M+10];
int n,m;
using namespace std;
void getNext()
{
	Next[0]=-1;
	int i=0,j=-1;
	while(i<m)
	{
		if(j==-1||mo[i]==mo[j])
		{
			i++;
			j++;
			Next[i]=j;
		}
		else
			j=Next[j];
	}
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d",&n,&m);
		for(int i=0;i<n;i++)
			scanf("%d",&str[i]);
		for(int i=0;i<m;i++)
			scanf("%d",&mo[i]);
		getNext();
		int ans=-1;
		int i=0,j=0;
		while(i<n)//KMP匹配
		{
			if(j==-1||str[i]==mo[j])
			{
				i++;
				j++;
			}
			else
				j=Next[j];
			if(j==m)
			{
				ans=i-j+1;
				break;
			}
		}


		printf("%d\n",ans);
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值