题目
Given any permutation of the numbers {0, 1, 2,…, N-1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (<=105) followed by a permutation sequence of {0, 1, …, N-1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:
10 3 5 7 2 6 4 9 0 8 1
Sample Output:
9
思路
初始序列:
3 5 7 2 6 4 9 0 8 1
对应的变换为:
3 5 0 2 6 4 9 7 8 1
3 5 2 0 6 4 9 7 8 1
0 5 2 3 6 4 9 7 8 1
5 0 2 3 6 4 9 7 8 1
5 1 2 3 6 4 9 7 8 0
5 1 2 3 6 4 0 7 8 9
5 1 2 3 0 4 6 7 8 9
5 1 2 3 4 0 6 7 8 9
0 1 2 3 4 5 6 7 8 9
为了快速找到元素位置,用pos数组存储每个值的位置。问题即转化为:如何修改pos数组的值,使得所有的pos[i] = i。
变换的方法是:
- 当pos[0] = i,且 i != 0 时,持续交换pos[0] 和 pos[i];
- 当pos[0] = 0,检查是否仍存在错位。设置checkPos表示已检查无错位的位置,初始化为1,每次检查都从checkPos向后检查。若有错位i(如上例中第3步变换后),则交换pos[0] 和 pos[i]然后重新执行1中的操作。直到pos