Call to a member function format() on string

本文介绍了一种在对象中设置预估时间的方法,并提供了如何从该对象中获取已设置预估时间的具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

$time = \DateTime::createFromFormat('Y-m-d H:i:s',$estimatedTime);
$order->setEstimatedTime($time);



/**
 * @return \DateTime
 */
public function getEstimatedTime()
{
    return $this->estimatedTime;
}

/**
 * @param \DateTime $estimatedTime
 */
public function setEstimatedTime($estimatedTime)
{
    $this->estimatedTime = $estimatedTime;
}

/* stdlib.h: ANSI draft (X3J11 May 88) library header, section 4.10 */ /* Copyright (C) Codemist Ltd., 1988-1993. */ /* Copyright 1991-1998,2014 ARM Limited. All rights reserved. */ /* * RCS $Revision$ * Checkin $Date$ * Revising $Author: agrant $ */ /* * stdlib.h declares four types, several general purpose functions, * and defines several macros. */ #ifndef __stdlib_h #define __stdlib_h #define __ARMCLIB_VERSION 5060034 #if defined(__clang__) || (defined(__ARMCC_VERSION) && !defined(__STRICT_ANSI__)) /* armclang and non-strict armcc allow 'long long' in system headers */ #define __LONGLONG long long #else /* strict armcc has '__int64' */ #define __LONGLONG __int64 #endif #define _ARMABI __declspec(__nothrow) #define _ARMABI_PURE __declspec(__nothrow) __attribute__((const)) #define _ARMABI_NORETURN __declspec(__nothrow) __declspec(__noreturn) #define _ARMABI_THROW #ifndef __STDLIB_DECLS #define __STDLIB_DECLS /* * Some of these declarations are new in C99. To access them in C++ * you can use -D__USE_C99_STDLIB (or -D__USE_C99ALL). */ #ifndef __USE_C99_STDLIB #if defined(__USE_C99_ALL) || (defined(__STDC_VERSION__) && 199901L <= __STDC_VERSION__) || (defined(__cplusplus) && 201103L <= __cplusplus) #define __USE_C99_STDLIB 1 #endif #endif #undef __CLIBNS #ifdef __cplusplus namespace std { #define __CLIBNS ::std:: extern "C" { #else #define __CLIBNS #endif /* __cplusplus */ #if defined(__cplusplus) || !defined(__STRICT_ANSI__) /* unconditional in C++ and non-strict C for consistency of debug info */ #if __sizeof_ptr == 8 typedef unsigned long size_t; /* see <stddef.h> */ #else typedef unsigned int size_t; /* see <stddef.h> */ #endif #elif !defined(__size_t) #define __size_t 1 #if __sizeof_ptr == 8 typedef unsigned long size_t; /* see <stddef.h> */ #else typedef unsigned int size_t; /* see <stddef.h> */ #endif #endif #undef NULL #define NULL 0 /* see <stddef.h> */ #ifndef __cplusplus /* wchar_t is a builtin type for C++ */ #if !defined(__STRICT_ANSI__) /* unconditional in non-strict C for consistency of debug info */ #if defined(__WCHAR32) || (defined(__ARM_SIZEOF_WCHAR_T) && __ARM_SIZEOF_WCHAR_T == 4) typedef unsigned int wchar_t; /* see <stddef.h> */ #else typedef unsigned short wchar_t; /* see <stddef.h> */ #endif #elif !defined(__wchar_t) #define __wchar_t 1 #if defined(__WCHAR32) || (defined(__ARM_SIZEOF_WCHAR_T) && __ARM_SIZEOF_WCHAR_T == 4) typedef unsigned int wchar_t; /* see <stddef.h> */ #else typedef unsigned short wchar_t; /* see <stddef.h> */ #endif #endif #endif typedef struct div_t { int quot, rem; } div_t; /* type of the value returned by the div function. */ typedef struct ldiv_t { long int quot, rem; } ldiv_t; /* type of the value returned by the ldiv function. */ #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB typedef struct lldiv_t { __LONGLONG quot, rem; } lldiv_t; /* type of the value returned by the lldiv function. */ #endif #ifdef __EXIT_FAILURE # define EXIT_FAILURE __EXIT_FAILURE /* * an integral expression which may be used as an argument to the exit * function to return unsuccessful termination status to the host * environment. */ #else # define EXIT_FAILURE 1 /* unixoid */ #endif #define EXIT_SUCCESS 0 /* * an integral expression which may be used as an argument to the exit * function to return successful termination status to the host * environment. */ /* * Defining __USE_ANSI_EXAMPLE_RAND at compile time switches to * the example implementation of rand() and srand() provided in * the ANSI C standard. This implementation is very poor, but is * provided for completeness. */ #ifdef __USE_ANSI_EXAMPLE_RAND #define srand _ANSI_srand #define rand _ANSI_rand #define RAND_MAX 0x7fff #else #define RAND_MAX 0x7fffffff #endif /* * RAND_MAX: an integral constant expression, the value of which * is the maximum value returned by the rand function. */ extern _ARMABI int __aeabi_MB_CUR_MAX(void); #define MB_CUR_MAX ( __aeabi_MB_CUR_MAX() ) /* * a positive integer expression whose value is the maximum number of bytes * in a multibyte character for the extended character set specified by the * current locale (category LC_CTYPE), and whose value is never greater * than MB_LEN_MAX. */ /* * If the compiler supports signalling nans as per N965 then it * will define __SUPPORT_SNAN__, in which case a user may define * _WANT_SNAN in order to obtain a compliant version of the strtod * family of functions. */ #if defined(__SUPPORT_SNAN__) && defined(_WANT_SNAN) #pragma import(__use_snan) #endif extern _ARMABI double atof(const char * /*nptr*/) __attribute__((__nonnull__(1))); /* * converts the initial part of the string pointed to by nptr to double * representation. * Returns: the converted value. */ extern _ARMABI int atoi(const char * /*nptr*/) __attribute__((__nonnull__(1))); /* * converts the initial part of the string pointed to by nptr to int * representation. * Returns: the converted value. */ extern _ARMABI long int atol(const char * /*nptr*/) __attribute__((__nonnull__(1))); /* * converts the initial part of the string pointed to by nptr to long int * representation. * Returns: the converted value. */ #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB extern _ARMABI __LONGLONG atoll(const char * /*nptr*/) __attribute__((__nonnull__(1))); /* * converts the initial part of the string pointed to by nptr to * long long int representation. * Returns: the converted value. */ #endif extern _ARMABI double strtod(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/) __attribute__((__nonnull__(1))); /* * converts the initial part of the string pointed to by nptr to double * representation. First it decomposes the input string into three parts: * an initial, possibly empty, sequence of white-space characters (as * specified by the isspace function), a subject sequence resembling a * floating point constant; and a final string of one or more unrecognised * characters, including the terminating null character of the input string. * Then it attempts to convert the subject sequence to a floating point * number, and returns the result. A pointer to the final string is stored * in the object pointed to by endptr, provided that endptr is not a null * pointer. * Returns: the converted value if any. If no conversion could be performed, * zero is returned. If the correct value is outside the range of * representable values, plus or minus HUGE_VAL is returned * (according to the sign of the value), and the value of the macro * ERANGE is stored in errno. If the correct value would cause * underflow, zero is returned and the value of the macro ERANGE is * stored in errno. */ #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB extern _ARMABI float strtof(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/) __attribute__((__nonnull__(1))); extern _ARMABI long double strtold(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/) __attribute__((__nonnull__(1))); /* * same as strtod, but return float and long double respectively. */ #endif extern _ARMABI long int strtol(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/, int /*base*/) __attribute__((__nonnull__(1))); /* * converts the initial part of the string pointed to by nptr to long int * representation. First it decomposes the input string into three parts: * an initial, possibly empty, sequence of white-space characters (as * specified by the isspace function), a subject sequence resembling an * integer represented in some radix determined by the value of base, and a * final string of one or more unrecognised characters, including the * terminating null character of the input string. Then it attempts to * convert the subject sequence to an integer, and returns the result. * If the value of base is 0, the expected form of the subject sequence is * that of an integer constant (described in ANSI Draft, section 3.1.3.2), * optionally preceded by a '+' or '-' sign, but not including an integer * suffix. If the value of base is between 2 and 36, the expected form of * the subject sequence is a sequence of letters and digits representing an * integer with the radix specified by base, optionally preceded by a plus * or minus sign, but not including an integer suffix. The letters from a * (or A) through z (or Z) are ascribed the values 10 to 35; only letters * whose ascribed values are less than that of the base are permitted. If * the value of base is 16, the characters 0x or 0X may optionally precede * the sequence of letters and digits following the sign if present. * A pointer to the final string is stored in the object * pointed to by endptr, provided that endptr is not a null pointer. * Returns: the converted value if any. If no conversion could be performed, * zero is returned and nptr is stored in *endptr. * If the correct value is outside the range of * representable values, LONG_MAX or LONG_MIN is returned * (according to the sign of the value), and the value of the * macro ERANGE is stored in errno. */ extern _ARMABI unsigned long int strtoul(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/, int /*base*/) __attribute__((__nonnull__(1))); /* * converts the initial part of the string pointed to by nptr to unsigned * long int representation. First it decomposes the input string into three * parts: an initial, possibly empty, sequence of white-space characters (as * determined by the isspace function), a subject sequence resembling an * unsigned integer represented in some radix determined by the value of * base, and a final string of one or more unrecognised characters, * including the terminating null character of the input string. Then it * attempts to convert the subject sequence to an unsigned integer, and * returns the result. If the value of base is zero, the expected form of * the subject sequence is that of an integer constant (described in ANSI * Draft, section 3.1.3.2), optionally preceded by a '+' or '-' sign, but * not including an integer suffix. If the value of base is between 2 and * 36, the expected form of the subject sequence is a sequence of letters * and digits representing an integer with the radix specified by base, * optionally preceded by a '+' or '-' sign, but not including an integer * suffix. The letters from a (or A) through z (or Z) stand for the values * 10 to 35; only letters whose ascribed values are less than that of the * base are permitted. If the value of base is 16, the characters 0x or 0X * may optionally precede the sequence of letters and digits following the * sign, if present. A pointer to the final string is stored in the object * pointed to by endptr, provided that endptr is not a null pointer. * Returns: the converted value if any. If no conversion could be performed, * zero is returned and nptr is stored in *endptr. * If the correct value is outside the range of * representable values, ULONG_MAX is returned, and the value of * the macro ERANGE is stored in errno. */ /* C90 reserves all names beginning with 'str' */ extern _ARMABI __LONGLONG strtoll(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/, int /*base*/) __attribute__((__nonnull__(1))); /* * as strtol but returns a long long int value. If the correct value is * outside the range of representable values, LLONG_MAX or LLONG_MIN is * returned (according to the sign of the value), and the value of the * macro ERANGE is stored in errno. */ extern _ARMABI unsigned __LONGLONG strtoull(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/, int /*base*/) __attribute__((__nonnull__(1))); /* * as strtoul but returns an unsigned long long int value. If the correct * value is outside the range of representable values, ULLONG_MAX is returned, * and the value of the macro ERANGE is stored in errno. */ extern _ARMABI int rand(void); /* * Computes a sequence of pseudo-random integers in the range 0 to RAND_MAX. * Uses an additive generator (Mitchell & Moore) of the form: * Xn = (X[n-24] + X[n-55]) MOD 2^31 * This is described in section 3.2.2 of Knuth, vol 2. It's period is * in excess of 2^55 and its randomness properties, though unproven, are * conjectured to be good. Empirical testing since 1958 has shown no flaws. * Returns: a pseudo-random integer. */ extern _ARMABI void srand(unsigned int /*seed*/); /* * uses its argument as a seed for a new sequence of pseudo-random numbers * to be returned by subsequent calls to rand. If srand is then called with * the same seed value, the sequence of pseudo-random numbers is repeated. * If rand is called before any calls to srand have been made, the same * sequence is generated as when srand is first called with a seed value * of 1. */ struct _rand_state { int __x[57]; }; extern _ARMABI int _rand_r(struct _rand_state *); extern _ARMABI void _srand_r(struct _rand_state *, unsigned int); struct _ANSI_rand_state { int __x[1]; }; extern _ARMABI int _ANSI_rand_r(struct _ANSI_rand_state *); extern _ARMABI void _ANSI_srand_r(struct _ANSI_rand_state *, unsigned int); /* * Re-entrant variants of both flavours of rand, which operate on * an explicitly supplied state buffer. */ extern _ARMABI void *calloc(size_t /*nmemb*/, size_t /*size*/); /* * allocates space for an array of nmemb objects, each of whose size is * 'size'. The space is initialised to all bits zero. * Returns: either a null pointer or a pointer to the allocated space. */ extern _ARMABI void free(void * /*ptr*/); /* * causes the space pointed to by ptr to be deallocated (i.e., made * available for further allocation). If ptr is a null pointer, no action * occurs. Otherwise, if ptr does not match a pointer earlier returned by * calloc, malloc or realloc or if the space has been deallocated by a call * to free or realloc, the behaviour is undefined. */ extern _ARMABI void *malloc(size_t /*size*/); /* * allocates space for an object whose size is specified by 'size' and whose * value is indeterminate. * Returns: either a null pointer or a pointer to the allocated space. */ extern _ARMABI void *realloc(void * /*ptr*/, size_t /*size*/); /* * changes the size of the object pointed to by ptr to the size specified by * size. The contents of the object shall be unchanged up to the lesser of * the new and old sizes. If the new size is larger, the value of the newly * allocated portion of the object is indeterminate. If ptr is a null * pointer, the realloc function behaves like a call to malloc for the * specified size. Otherwise, if ptr does not match a pointer earlier * returned by calloc, malloc or realloc, or if the space has been * deallocated by a call to free or realloc, the behaviour is undefined. * If the space cannot be allocated, the object pointed to by ptr is * unchanged. If size is zero and ptr is not a null pointer, the object it * points to is freed. * Returns: either a null pointer or a pointer to the possibly moved * allocated space. */ #if !defined(__STRICT_ANSI__) extern _ARMABI int posix_memalign(void ** /*ret*/, size_t /*alignment*/, size_t /*size*/); /* * allocates space for an object of size 'size', aligned to a * multiple of 'alignment' (which must be a power of two and at * least 4). * * On success, a pointer to the allocated object is stored in * *ret, and zero is returned. On failure, the return value is * either ENOMEM (allocation failed because no suitable piece of * memory was available) or EINVAL (the 'alignment' parameter was * invalid). */ #endif typedef int (*__heapprt)(void *, char const *, ...); extern _ARMABI void __heapstats(int (* /*dprint*/)(void * /*param*/, char const * /*format*/, ...), void * /*param*/) __attribute__((__nonnull__(1))); /* * reports current heap statistics (eg. number of free blocks in * the free-list). Output is as implementation-defined free-form * text, provided via the dprint function. `param' gives an * extra data word to pass to dprint. You can call * __heapstats(fprintf,stdout) by casting fprintf to the above * function type; the typedef `__heapprt' is provided for this * purpose. * * `dprint' will not be called while the heap is being examined, * so it can allocate memory itself without trouble. */ extern _ARMABI int __heapvalid(int (* /*dprint*/)(void * /*param*/, char const * /*format*/, ...), void * /*param*/, int /*verbose*/) __attribute__((__nonnull__(1))); /* * performs a consistency check on the heap. Errors are reported * through dprint, like __heapstats. If `verbose' is nonzero, * full diagnostic information on the heap state is printed out. * * This routine probably won't work if the heap isn't a * contiguous chunk (for example, if __user_heap_extend has been * overridden). * * `dprint' may be called while the heap is being examined or * even in an invalid state, so it must perform no memory * allocation. In particular, if `dprint' calls (or is) a stdio * function, the stream it outputs to must already have either * been written to or been setvbuf'ed, or else the system will * allocate buffer space for it on the first call to dprint. */ extern _ARMABI_NORETURN void abort(void); /* * causes abnormal program termination to occur, unless the signal SIGABRT * is being caught and the signal handler does not return. Whether open * output streams are flushed or open streams are closed or temporary * files removed is implementation-defined. * An implementation-defined form of the status 'unsuccessful termination' * is returned to the host environment by means of a call to * raise(SIGABRT). */ extern _ARMABI int atexit(void (* /*func*/)(void)) __attribute__((__nonnull__(1))); /* * registers the function pointed to by func, to be called without its * arguments at normal program termination. It is possible to register at * least 32 functions. * Returns: zero if the registration succeeds, nonzero if it fails. */ #if defined(__EDG__) && !defined(__GNUC__) #define __LANGUAGE_LINKAGE_CHANGES_FUNCTION_TYPE #endif #if defined(__cplusplus) && defined(__LANGUAGE_LINKAGE_CHANGES_FUNCTION_TYPE) /* atexit that takes a ptr to a function with C++ linkage * but not in GNU mode */ typedef void (* __C_exitfuncptr)(); extern "C++" inline int atexit(void (* __func)()) { return atexit((__C_exitfuncptr)__func); } #endif extern _ARMABI_NORETURN void exit(int /*status*/); /* * causes normal program termination to occur. If more than one call to the * exit function is executed by a program, the behaviour is undefined. * First, all functions registered by the atexit function are called, in the * reverse order of their registration. * Next, all open output streams are flushed, all open streams are closed, * and all files created by the tmpfile function are removed. * Finally, control is returned to the host environment. If the value of * status is zero or EXIT_SUCCESS, an implementation-defined form of the * status 'successful termination' is returned. If the value of status is * EXIT_FAILURE, an implementation-defined form of the status * 'unsuccessful termination' is returned. Otherwise the status returned * is implementation-defined. */ extern _ARMABI_NORETURN void _Exit(int /*status*/); /* * causes normal program termination to occur. No functions registered * by the atexit function are called. * In this implementation, all open output streams are flushed, all * open streams are closed, and all files created by the tmpfile function * are removed. * Control is returned to the host environment. The status returned to * the host environment is determined in the same way as for 'exit'. */ extern _ARMABI char *getenv(const char * /*name*/) __attribute__((__nonnull__(1))); /* * searches the environment list, provided by the host environment, for a * string that matches the string pointed to by name. The set of environment * names and the method for altering the environment list are * implementation-defined. * Returns: a pointer to a string associated with the matched list member. * The array pointed to shall not be modified by the program, but * may be overwritten by a subsequent call to the getenv function. * If the specified name cannot be found, a null pointer is * returned. */ extern _ARMABI int system(const char * /*string*/); /* * passes the string pointed to by string to the host environment to be * executed by a command processor in an implementation-defined manner. * A null pointer may be used for string, to inquire whether a command * processor exists. * * Returns: If the argument is a null pointer, the system function returns * non-zero only if a command processor is available. If the * argument is not a null pointer, the system function returns an * implementation-defined value. */ extern _ARMABI_THROW void *bsearch(const void * /*key*/, const void * /*base*/, size_t /*nmemb*/, size_t /*size*/, int (* /*compar*/)(const void *, const void *)) __attribute__((__nonnull__(1,2,5))); /* * searches an array of nmemb objects, the initial member of which is * pointed to by base, for a member that matches the object pointed to by * key. The size of each member of the array is specified by size. * The contents of the array shall be in ascending sorted order according to * a comparison function pointed to by compar, which is called with two * arguments that point to the key object and to an array member, in that * order. The function shall return an integer less than, equal to, or * greater than zero if the key object is considered, respectively, to be * less than, to match, or to be greater than the array member. * Returns: a pointer to a matching member of the array, or a null pointer * if no match is found. If two members compare as equal, which * member is matched is unspecified. */ #if defined(__cplusplus) && defined(__LANGUAGE_LINKAGE_CHANGES_FUNCTION_TYPE) /* bsearch that takes a ptr to a function with C++ linkage * but not in GNU mode */ typedef int (* __C_compareprocptr)(const void *, const void *); extern "C++" void *bsearch(const void * __key, const void * __base, size_t __nmemb, size_t __size, int (* __compar)(const void *, const void *)) __attribute__((__nonnull__(1,2,5))); extern "C++" inline void *bsearch(const void * __key, const void * __base, size_t __nmemb, size_t __size, int (* __compar)(const void *, const void *)) { return bsearch(__key, __base, __nmemb, __size, (__C_compareprocptr)__compar); } #endif extern _ARMABI_THROW void qsort(void * /*base*/, size_t /*nmemb*/, size_t /*size*/, int (* /*compar*/)(const void *, const void *)) __attribute__((__nonnull__(1,4))); /* * sorts an array of nmemb objects, the initial member of which is pointed * to by base. The size of each object is specified by size. * The contents of the array shall be in ascending order according to a * comparison function pointed to by compar, which is called with two * arguments that point to the objects being compared. The function shall * return an integer less than, equal to, or greater than zero if the first * argument is considered to be respectively less than, equal to, or greater * than the second. If two members compare as equal, their order in the * sorted array is unspecified. */ #if defined(__cplusplus) && defined(__LANGUAGE_LINKAGE_CHANGES_FUNCTION_TYPE) /* qsort that takes a ptr to a function with C++ linkage * but not in GNU mode */ extern "C++" void qsort(void * __base, size_t __nmemb, size_t __size, int (* __compar)(const void *, const void *)) __attribute__((__nonnull__(1,4))); extern "C++" inline void qsort(void * __base, size_t __nmemb, size_t __size, int (* __compar)(const void *, const void *)) { qsort(__base, __nmemb, __size, (__C_compareprocptr)__compar); } #endif extern _ARMABI_PURE int abs(int /*j*/); /* * computes the absolute value of an integer j. If the result cannot be * represented, the behaviour is undefined. * Returns: the absolute value. */ extern _ARMABI_PURE div_t div(int /*numer*/, int /*denom*/); /* * computes the quotient and remainder of the division of the numerator * numer by the denominator denom. If the division is inexact, the resulting * quotient is the integer of lesser magnitude that is the nearest to the * algebraic quotient. If the result cannot be represented, the behaviour is * undefined; otherwise, quot * denom + rem shall equal numer. * Returns: a structure of type div_t, comprising both the quotient and the * remainder. the structure shall contain the following members, * in either order. * int quot; int rem; */ extern _ARMABI_PURE long int labs(long int /*j*/); /* * computes the absolute value of an long integer j. If the result cannot be * represented, the behaviour is undefined. * Returns: the absolute value. */ #ifdef __cplusplus extern "C++" inline _ARMABI_PURE long abs(long int x) { return labs(x); } #endif extern _ARMABI_PURE ldiv_t ldiv(long int /*numer*/, long int /*denom*/); /* * computes the quotient and remainder of the division of the numerator * numer by the denominator denom. If the division is inexact, the sign of * the resulting quotient is that of the algebraic quotient, and the * magnitude of the resulting quotient is the largest integer less than the * magnitude of the algebraic quotient. If the result cannot be represented, * the behaviour is undefined; otherwise, quot * denom + rem shall equal * numer. * Returns: a structure of type ldiv_t, comprising both the quotient and the * remainder. the structure shall contain the following members, * in either order. * long int quot; long int rem; */ #ifdef __cplusplus extern "C++" inline _ARMABI_PURE ldiv_t div(long int __numer, long int __denom) { return ldiv(__numer, __denom); } #endif #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB extern _ARMABI_PURE __LONGLONG llabs(__LONGLONG /*j*/); /* * computes the absolute value of a long long integer j. If the * result cannot be represented, the behaviour is undefined. * Returns: the absolute value. */ #ifdef __cplusplus extern "C++" inline _ARMABI_PURE __LONGLONG abs(__LONGLONG x) { return llabs(x); } #endif extern _ARMABI_PURE lldiv_t lldiv(__LONGLONG /*numer*/, __LONGLONG /*denom*/); /* * computes the quotient and remainder of the division of the numerator * numer by the denominator denom. If the division is inexact, the sign of * the resulting quotient is that of the algebraic quotient, and the * magnitude of the resulting quotient is the largest integer less than the * magnitude of the algebraic quotient. If the result cannot be represented, * the behaviour is undefined; otherwise, quot * denom + rem shall equal * numer. * Returns: a structure of type lldiv_t, comprising both the quotient and the * remainder. the structure shall contain the following members, * in either order. * long long quot; long long rem; */ #ifdef __cplusplus extern "C++" inline _ARMABI_PURE lldiv_t div(__LONGLONG __numer, __LONGLONG __denom) { return lldiv(__numer, __denom); } #endif #endif #if !(__ARM_NO_DEPRECATED_FUNCTIONS) /* * ARM real-time divide functions for guaranteed performance */ typedef struct __sdiv32by16 { int quot, rem; } __sdiv32by16; typedef struct __udiv32by16 { unsigned int quot, rem; } __udiv32by16; /* used int so that values return in separate regs, although 16-bit */ typedef struct __sdiv64by32 { int rem, quot; } __sdiv64by32; __value_in_regs extern _ARMABI_PURE __sdiv32by16 __rt_sdiv32by16( int /*numer*/, short int /*denom*/); /* * Signed divide: (16-bit quot), (16-bit rem) = (32-bit) / (16-bit) */ __value_in_regs extern _ARMABI_PURE __udiv32by16 __rt_udiv32by16( unsigned int /*numer*/, unsigned short /*denom*/); /* * Unsigned divide: (16-bit quot), (16-bit rem) = (32-bit) / (16-bit) */ __value_in_regs extern _ARMABI_PURE __sdiv64by32 __rt_sdiv64by32( int /*numer_h*/, unsigned int /*numer_l*/, int /*denom*/); /* * Signed divide: (32-bit quot), (32-bit rem) = (64-bit) / (32-bit) */ #endif /* * ARM floating-point mask/status function (for both hardfp and softfp) */ extern _ARMABI unsigned int __fp_status(unsigned int /*mask*/, unsigned int /*flags*/); /* * mask and flags are bit-fields which correspond directly to the * floating point status register in the FPE/FPA and fplib. * __fp_status returns the current value of the status register, * and also sets the writable bits of the word * (the exception control and flag bytes) to: * * new = (old & ~mask) ^ flags; */ #define __fpsr_IXE 0x100000 #define __fpsr_UFE 0x80000 #define __fpsr_OFE 0x40000 #define __fpsr_DZE 0x20000 #define __fpsr_IOE 0x10000 #define __fpsr_IXC 0x10 #define __fpsr_UFC 0x8 #define __fpsr_OFC 0x4 #define __fpsr_DZC 0x2 #define __fpsr_IOC 0x1 /* * Multibyte Character Functions. * The behaviour of the multibyte character functions is affected by the * LC_CTYPE category of the current locale. For a state-dependent encoding, * each function is placed into its initial state by a call for which its * character pointer argument, s, is a null pointer. Subsequent calls with s * as other than a null pointer cause the internal state of the function to be * altered as necessary. A call with s as a null pointer causes these functions * to return a nonzero value if encodings have state dependency, and a zero * otherwise. After the LC_CTYPE category is changed, the shift state of these * functions is indeterminate. */ extern _ARMABI int mblen(const char * /*s*/, size_t /*n*/); /* * If s is not a null pointer, the mblen function determines the number of * bytes compromising the multibyte character pointed to by s. Except that * the shift state of the mbtowc function is not affected, it is equivalent * to mbtowc((wchar_t *)0, s, n); * Returns: If s is a null pointer, the mblen function returns a nonzero or * zero value, if multibyte character encodings, respectively, do * or do not have state-dependent encodings. If s is not a null * pointer, the mblen function either returns a 0 (if s points to a * null character), or returns the number of bytes that compromise * the multibyte character (if the next n of fewer bytes form a * valid multibyte character), or returns -1 (they do not form a * valid multibyte character). */ extern _ARMABI int mbtowc(wchar_t * __restrict /*pwc*/, const char * __restrict /*s*/, size_t /*n*/); /* * If s is not a null pointer, the mbtowc function determines the number of * bytes that compromise the multibyte character pointed to by s. It then * determines the code for value of type wchar_t that corresponds to that * multibyte character. (The value of the code corresponding to the null * character is zero). If the multibyte character is valid and pwc is not a * null pointer, the mbtowc function stores the code in the object pointed * to by pwc. At most n bytes of the array pointed to by s will be examined. * Returns: If s is a null pointer, the mbtowc function returns a nonzero or * zero value, if multibyte character encodings, respectively, do * or do not have state-dependent encodings. If s is not a null * pointer, the mbtowc function either returns a 0 (if s points to * a null character), or returns the number of bytes that * compromise the converted multibyte character (if the next n of * fewer bytes form a valid multibyte character), or returns -1 * (they do not form a valid multibyte character). */ extern _ARMABI int wctomb(char * /*s*/, wchar_t /*wchar*/); /* * determines the number of bytes need to represent the multibyte character * corresponding to the code whose value is wchar (including any change in * shift state). It stores the multibyte character representation in the * array object pointed to by s (if s is not a null pointer). At most * MB_CUR_MAX characters are stored. If the value of wchar is zero, the * wctomb function is left in the initial shift state). * Returns: If s is a null pointer, the wctomb function returns a nonzero or * zero value, if multibyte character encodings, respectively, do * or do not have state-dependent encodings. If s is not a null * pointer, the wctomb function returns a -1 if the value of wchar * does not correspond to a valid multibyte character, or returns * the number of bytes that compromise the multibyte character * corresponding to the value of wchar. */ /* * Multibyte String Functions. * The behaviour of the multibyte string functions is affected by the LC_CTYPE * category of the current locale. */ extern _ARMABI size_t mbstowcs(wchar_t * __restrict /*pwcs*/, const char * __restrict /*s*/, size_t /*n*/) __attribute__((__nonnull__(2))); /* * converts a sequence of multibyte character that begins in the initial * shift state from the array pointed to by s into a sequence of * corresponding codes and stores not more than n codes into the array * pointed to by pwcs. No multibyte character that follow a null character * (which is converted into a code with value zero) will be examined or * converted. Each multibyte character is converted as if by a call to * mbtowc function, except that the shift state of the mbtowc function is * not affected. No more than n elements will be modified in the array * pointed to by pwcs. If copying takes place between objects that overlap, * the behaviour is undefined. * Returns: If an invalid multibyte character is encountered, the mbstowcs * function returns (size_t)-1. Otherwise, the mbstowcs function * returns the number of array elements modified, not including * a terminating zero code, if any. */ extern _ARMABI size_t wcstombs(char * __restrict /*s*/, const wchar_t * __restrict /*pwcs*/, size_t /*n*/) __attribute__((__nonnull__(2))); /* * converts a sequence of codes that correspond to multibyte characters * from the array pointed to by pwcs into a sequence of multibyte * characters that begins in the initial shift state and stores these * multibyte characters into the array pointed to by s, stopping if a * multibyte character would exceed the limit of n total bytes or if a * null character is stored. Each code is converted as if by a call to the * wctomb function, except that the shift state of the wctomb function is * not affected. No more than n elements will be modified in the array * pointed to by s. If copying takes place between objects that overlap, * the behaviour is undefined. * Returns: If a code is encountered that does not correspond to a valid * multibyte character, the wcstombs function returns (size_t)-1. * Otherwise, the wcstombs function returns the number of bytes * modified, not including a terminating null character, if any. */ extern _ARMABI void __use_realtime_heap(void); extern _ARMABI void __use_realtime_division(void); extern _ARMABI void __use_two_region_memory(void); extern _ARMABI void __use_no_heap(void); extern _ARMABI void __use_no_heap_region(void); extern _ARMABI char const *__C_library_version_string(void); extern _ARMABI int __C_library_version_number(void); #ifdef __cplusplus } /* extern "C" */ } /* namespace std */ #endif /* __cplusplus */ #endif /* __STDLIB_DECLS */ #if _AEABI_PORTABILITY_LEVEL != 0 && !defined _AEABI_PORTABLE #define _AEABI_PORTABLE #endif #ifdef __cplusplus #ifndef __STDLIB_NO_EXPORTS #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB using ::std::atoll; using ::std::lldiv_t; #endif /* !defined(__STRICT_ANSI__) || __USE_C99_STDLIB */ using ::std::div_t; using ::std::ldiv_t; using ::std::atof; using ::std::atoi; using ::std::atol; using ::std::strtod; #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB using ::std::strtof; using ::std::strtold; #endif using ::std::strtol; using ::std::strtoul; using ::std::strtoll; using ::std::strtoull; using ::std::rand; using ::std::srand; using ::std::_rand_state; using ::std::_rand_r; using ::std::_srand_r; using ::std::_ANSI_rand_state; using ::std::_ANSI_rand_r; using ::std::_ANSI_srand_r; using ::std::calloc; using ::std::free; using ::std::malloc; using ::std::realloc; #if !defined(__STRICT_ANSI__) using ::std::posix_memalign; #endif using ::std::__heapprt; using ::std::__heapstats; using ::std::__heapvalid; using ::std::abort; using ::std::atexit; using ::std::exit; using ::std::_Exit; using ::std::getenv; using ::std::system; using ::std::bsearch; using ::std::qsort; using ::std::abs; using ::std::div; using ::std::labs; using ::std::ldiv; #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB using ::std::llabs; using ::std::lldiv; #endif /* !defined(__STRICT_ANSI__) || __USE_C99_STDLIB */ #if !(__ARM_NO_DEPRECATED_FUNCTIONS) using ::std::__sdiv32by16; using ::std::__udiv32by16; using ::std::__sdiv64by32; using ::std::__rt_sdiv32by16; using ::std::__rt_udiv32by16; using ::std::__rt_sdiv64by32; #endif using ::std::__fp_status; using ::std::mblen; using ::std::mbtowc; using ::std::wctomb; using ::std::mbstowcs; using ::std::wcstombs; using ::std::__use_realtime_heap; using ::std::__use_realtime_division; using ::std::__use_two_region_memory; using ::std::__use_no_heap; using ::std::__use_no_heap_region; using ::std::__C_library_version_string; using ::std::__C_library_version_number; using ::std::size_t; using ::std::__aeabi_MB_CUR_MAX; #endif /* __STDLIB_NO_EXPORTS */ #endif /* __cplusplus */ #undef __LONGLONG #endif /* __stdlib_h */ /* end of stdlib.h */ 这是啥
最新发布
07-09
我做了一个宠物智能投喂系统,现在我有一个stm32f103c6单片机外接8MHz的晶振,其PA1连作为RXD,PA2作为TXD,PB0、PB1连接了发光二极管的负极,发光二极管的正极接的电源,发光二极管用来模拟电机转动状态,在收到喂食的指令后PB0先亮两秒,PB1先不亮,然后在PB1亮两秒PB0熄灭,最后一起闪烁两秒表示喂食已完成,我创建了一个mfc程序(PCMFCDLG),添加了5个Combo Box控件分别用来选择端口号(控件类,m_cbPort)、波特率(控件类,m_cbBaud)、校验位(控件类,m_cbParity)、数据位(控件类,m_cbDate)以及停止位(控件类,m_cbStop),4个按钮控件分别用来打开串口连接stm32单片机、关闭串口、立即投喂、定时投喂,3个Edit control控件(value类,m_strTime1/2/3)用来定时3个时间点实现定时投喂,最后还有一个List Box(控件类,m_listStatus)用来显示执行状态,在PC机与单片机没有建立连接的时候除了连接按钮,其他按钮都不能点击,在定时按钮没有按下的时候edit control控件不能输入,在单片机执行完相应操作后,会返还给PC机信息,然后显示在list box里面如mfc界面点击立即投喂,单片机执行完操作后返回给pc端mfc界面一个标志,告诉pc端操作已完成,然后在mfc界面的list里面显示对应操作已完成。 /* Module : SerialPort.h Purpose: Interface for an C++ wrapper class for serial ports Copyright (c) 1999 - 2015 by PJ Naughter. All rights reserved. Copyright / Usage Details: You are allowed to include the source code in any product (commercial, shareware, freeware or otherwise) when your product is released in binary form. You are allowed to modify the source code in any way you want except you cannot modify the copyright details at the top of each module. If you want to distribute source code with your application, then you are only allowed to distribute versions released by the author. This is to maintain a single distribution point for the source code. */ // Macros / Structs etc #pragma once #ifndef __SERIALPORT_H__ #define __SERIALPORT_H__ #ifndef CSERIALPORT_EXT_CLASS #define CSERIALPORT_EXT_CLASS #endif //#ifndef CSERIALPORT_EXT_CLASS #ifndef _Out_writes_bytes_ #define _Out_writes_bytes_(X) #endif //#ifndef _Out_writes_bytes_ #ifndef __out_data_source #define __out_data_source(X) #endif //#ifndef __out_data_source #ifndef _Out_writes_bytes_to_opt_ #define _Out_writes_bytes_to_opt_(X,Y) #endif //#ifndef _Out_writes_bytes_to_opt_ #ifndef _Out_writes_bytes_opt_ #define _Out_writes_bytes_opt_(X) #endif //#ifndef _Out_writes_bytes_opt_ #ifndef _In_reads_bytes_opt_ #define _In_reads_bytes_opt_(X) #endif //#ifndef _In_reads_bytes_opt_ #ifndef _In_ #define _In_ #endif //#ifndef _In_ #ifndef _In_z_ #define _In_z_ #endif //#ifndef _In_z_ #ifndef _Inout_opt_ #define _Inout_opt_ #endif //#ifndef _Inout_opt_ #ifndef _Out_opt_ #define _Out_opt_ #endif //#ifndef _Out_opt_ #ifndef _Out_ #define _Out_ #endif //#ifndef _Out_ #ifndef _Inout_ #define _Inout_ #endif //#ifndef _Inout_ #ifndef _In_opt_ #define _In_opt_ #endif //#ifndef _In_opt_ // Includes /// #include <sal.h> #ifndef CSERIALPORT_MFC_EXTENSTIONS #include <exception> #include <string> #endif //#ifndef CSERIALPORT_MFC_EXTENSTIONS /// Classes /// #ifdef CSERIALPORT_MFC_EXTENSIONS class CSERIALPORT_EXT_CLASS CSerialException : public CException #else class CSERIALPORT_EXT_CLASS CSerialException : public std::exception #endif //#ifdef CSERIALPORT_MFC_EXTENSIONS { public: //Constructors / Destructors CSerialException(DWORD dwError); //Methods #ifdef CSERIALPORT_MFC_EXTENSIONS #ifdef _DEBUG virtual void Dump(CDumpContext& dc) const; #endif //#ifdef _DEBUG #endif //#ifdef CSERIALPORT_MFC_EXTENSIONS #if _MSC_VER >= 1700 virtual BOOL GetErrorMessage(_Out_z_cap_(nMaxError) LPTSTR lpszError, _In_ UINT nMaxError, _Out_opt_ PUINT pnHelpContext = NULL); #else virtual BOOL GetErrorMessage(__out_ecount_z(nMaxError) LPTSTR lpszError, __in UINT nMaxError, __out_opt PUINT pnHelpContext = NULL); #endif #ifdef CSERIALPORT_MFC_EXTENSIONS CString GetErrorMessage(); #endif //#ifdef CSERIALPORT_MFC_EXTENSIONS //Data members DWORD m_dwError; }; class CSERIALPORT_EXT_CLASS CSerialPort { public: //Enums enum FlowControl { NoFlowControl, CtsRtsFlowControl, CtsDtrFlowControl, DsrRtsFlowControl, DsrDtrFlowControl, XonXoffFlowControl }; enum Parity { NoParity = 0, OddParity = 1, EvenParity = 2, MarkParity = 3, SpaceParity = 4 }; enum StopBits { OneStopBit, OnePointFiveStopBits, TwoStopBits }; //Constructors / Destructors CSerialPort(); virtual ~CSerialPort(); //General Methods void Open(_In_ int nPort, _In_ DWORD dwBaud = 9600, _In_ Parity parity = NoParity, _In_ BYTE DataBits = 8, _In_ StopBits stopBits = OneStopBit, _In_ FlowControl fc = NoFlowControl, _In_ BOOL bOverlapped = FALSE); void Open(_In_z_ LPCTSTR pszPort, _In_ DWORD dwBaud = 9600, _In_ Parity parity = NoParity, _In_ BYTE DataBits = 8, _In_ StopBits stopBits = OneStopBit, _In_ FlowControl fc = NoFlowControl, _In_ BOOL bOverlapped = FALSE); void Close(); void Attach(_In_ HANDLE hComm); HANDLE Detach(); operator HANDLE() const { return m_hComm; }; BOOL IsOpen() const { return m_hComm != INVALID_HANDLE_VALUE; }; #ifdef CSERIALPORT_MFC_EXTENSIONS #ifdef _DEBUG void Dump(_In_ CDumpContext& dc) const; #endif //#ifdef _DEBUG #endif //#ifdef CSERIALPORT_MFC_EXTENSIONS //Reading / Writing Methods void Read(_Out_writes_bytes_(dwNumberOfBytesToRead) __out_data_source(FILE) void* lpBuffer, _In_ DWORD dwNumberOfBytesToRead); void Read(_Out_writes_bytes_to_opt_(dwNumberOfBytesToRead, *lpNumberOfBytesRead) __out_data_source(FILE) void* lpBuffer, _In_ DWORD dwNumberOfBytesToRead, _In_ OVERLAPPED& overlapped, _Inout_opt_ DWORD* lpNumberOfBytesRead = NULL); void ReadEx(_Out_writes_bytes_opt_(dwNumberOfBytesToRead) __out_data_source(FILE) LPVOID lpBuffer, _In_ DWORD dwNumberOfBytesToRead, _Inout_ LPOVERLAPPED lpOverlapped, _In_ LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine); DWORD Write(_In_reads_bytes_opt_(dwNumberOfBytesToWrite) const void* lpBuffer, _In_ DWORD dwNumberOfBytesToWrite); void Write(_In_reads_bytes_opt_(dwNumberOfBytesToWrite) const void* lpBuffer, _In_ DWORD dwNumberOfBytesToWrite, _In_ OVERLAPPED& overlapped, _Out_opt_ DWORD* lpNumberOfBytesWritten = NULL); void WriteEx(_In_reads_bytes_opt_(dwNumberOfBytesToWrite) LPCVOID lpBuffer, _In_ DWORD dwNumberOfBytesToWrite, _Inout_ LPOVERLAPPED lpOverlapped, _In_ LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine); void TransmitChar(_In_ char cChar); DWORD GetOverlappedResult(_In_ OVERLAPPED& overlapped, _Out_ DWORD& dwBytesTransferred, _In_ BOOL bWait); void CancelIo(); DWORD BytesWaiting(); DWORD BytesPending(); //Configuration Methods void GetConfig(_In_ COMMCONFIG& config); static void GetDefaultConfig(_In_ int nPort, _Out_ COMMCONFIG& config); static void GetDefaultConfig(_In_z_ LPCTSTR pszPort, _Out_ COMMCONFIG& config); void SetConfig(_In_ COMMCONFIG& Config); static void SetDefaultConfig(_In_ int nPort, _In_ COMMCONFIG& config); static void SetDefaultConfig(_In_z_ LPCTSTR pszPort, _In_ COMMCONFIG& config); //Misc RS232 Methods void ClearBreak(); void SetBreak(); void ClearError(_Out_ DWORD& dwErrors); void GetStatus(_Out_ COMSTAT& stat); void GetState(_Out_ DCB& dcb); void SetState(_In_ DCB& dcb); void Escape(_In_ DWORD dwFunc); void ClearDTR(); void ClearRTS(); void SetDTR(); void SetRTS(); void SetXOFF(); void SetXON(); void GetProperties(_Inout_ COMMPROP& properties); void GetModemStatus(_Out_ DWORD& dwModemStatus); //Timeouts void SetTimeouts(_In_ COMMTIMEOUTS& timeouts); void GetTimeouts(_Out_ COMMTIMEOUTS& timeouts); void Set0Timeout(); void Set0WriteTimeout(); void Set0ReadTimeout(); //Event Methods void SetMask(_In_ DWORD dwMask); void GetMask(_Out_ DWORD& dwMask); void WaitEvent(_Inout_ DWORD& dwMask); BOOL WaitEvent(_Inout_ DWORD& dwMask, _Inout_ OVERLAPPED& overlapped); //Queue Methods void Flush(); void Purge(_In_ DWORD dwFlags); void TerminateOutstandingWrites(); void TerminateOutstandingReads(); void ClearWriteBuffer(); void ClearReadBuffer(); void Setup(_In_ DWORD dwInQueue, _In_ DWORD dwOutQueue); //Static methods static void ThrowSerialException(_In_ DWORD dwError = 0); protected: //Member variables HANDLE m_hComm; //Handle to the comms port }; #endif //#ifndef __SERIALPORT_H__ /* Module : SerialPort.cpp Purpose: Implementation for an C++ wrapper class for serial ports Created: PJN / 31-05-1999 History: PJN / 03-06-1999 1. Fixed problem with code using CancelIo which does not exist on 95. 2. Fixed leaks which can occur in sample app when an exception is thrown PJN / 16-06-1999 1. Fixed a bug whereby CString::ReleaseBuffer was not being called in CSerialException::GetErrorMessage PJN / 29-09-1999 1. Fixed a simple copy and paste bug in CSerialPort::SetDTR PJN / 08-05-2000 1. Fixed an unreferrenced variable in CSerialPort::GetOverlappedResult in VC 6 PJN / 10-12-2000 1. Made class destructor virtual PJN / 15-01-2001 1. Attach method now also allows you to specify whether the serial port is being attached to in overlapped mode 2. Removed some ASSERTs which were unnecessary in some of the functions 3. Updated the Read method which uses OVERLAPPED IO to also return the bytes read. This allows calls to WriteFile with a zeroed overlapped structure (This is required when dealing with TAPI and serial communications) 4. Now includes copyright message in the source code and documentation. PJN / 24-03-2001 1. Added a BytesWaiting method PJN / 04-04-2001 1. Provided an overriden version of BytesWaiting which specifies a timeout PJN / 23-04-2001 1. Fixed a memory leak in DataWaiting method PJN / 01-05-2002 1. Fixed a problem in Open method which was failing to initialize the DCB structure incorrectly, when calling GetState. Thanks to Ben Newson for this fix. PJN / 29-05-2002 1. Fixed an problem where the GetProcAddress for CancelIO was using the wrong calling convention PJN / 07-08-2002 1. Changed the declaration of CSerialPort::WaitEvent to be consistent with the rest of the methods in CSerialPort which can operate in "OVERLAPPED" mode. A note about the usage of this: If the method succeeds then the overlapped operation has completed synchronously and there is no need to do a WaitForSingle/MultipleObjects. If any other unexpected error occurs then a CSerialException will be thrown. See the implementation of the CSerialPort::DataWaiting which has been rewritten to use this new design pattern. Thanks to Serhiy Pavlov for spotting this inconsistency. PJN / 20-09-2002 1. Addition of an additional ASSERT in the internal _OnCompletion function. 2. Addition of an optional out parameter to the Write method which operates in overlapped mode. Thanks to Kevin Pinkerton for this addition. PJN / 10-04-2006 1. Updated copyright details. 2. Addition of a CSERIALPORT_EXT_CLASS and CSERIALPORT_EXT_API macros which makes the class easier to use in an extension dll. 3. Removed derivation of CSerialPort from CObject as it was not really needed. 4. Fixed a number of level 4 warnings in the sample app. 5. Reworked the overlapped IO methods to expose the LPOVERLAPPED structure to client code. 6. Updated the documentation to use the same style as the web site. 7. Did a spell check of the HTML documentation. 8. Updated the documentation on possible blocking in Read/Ex function. Thanks to D Kerrison for reporting this issue. 9. Fixed a minor issue in the sample app when the code is compiled using /Wp64 PJN / 02-06-2006 1. Removed the bOverlapped as a member variable from the class. There was no real need for this setting, since the SDK functions will perform their own checking of how overlapped operations should 2. Fixed a bug in GetOverlappedResult where the code incorrectly checking against the error ERROR_IO_PENDING instead of ERROR_IO_INCOMPLETE. Thanks to Sasho Darmonski for reporting this bug. 3. Reviewed all TRACE statements for correctness. PJN / 05-06-2006 1. Fixed an issue with the creation of the internal event object. It was incorrectly being created as an auto-reset event object instead of a manual reset event object. Thanks to Sasho Darmonski for reporting this issue. PJN / 24-06-2006 1. Fixed some typos in the history list. Thanks to Simon Wong for reporting this. 2. Made the class which handles the construction of function pointers at runtime a member variable of CSerialPort 3. Made AfxThrowSerialPortException part of the CSerialPort class. Thanks to Simon Wong for reporting this. 4. Removed the unnecessary CSerialException destructor. Thanks to Simon Wong for reporting this. 5. Fixed a minor error in the TRACE text in CSerialPort::SetDefaultConfig. Again thanks to Simon Wong for reporting this. 6. Code now uses new C++ style casts rather than old style C casts where necessary. Again thanks to Simon Wong for reporting this. 7. CSerialException::GetErrorMessage now uses the strsafe functions. This does mean that the code now requires the Platform SDK if compiled using VC 6. PJN / 25-06-2006 1. Combined the functionality of the CSerialPortData class into the main CSerialPort class. 2. Renamed AfxThrowSerialPortException to ThrowSerialPortException and made the method public. PJN / 05-11-2006 1. Minor update to stdafx.h of sample app to avoid compiler warnings in VC 2005. 2. Reverted the use of the strsafe.h header file. Instead now the code uses the VC 2005 Safe CRT and if this is not available, then we fail back to the standard CRT. PJN / 25-01-2007 1. Minor update to remove strsafe.h from stdafx.h of the sample app. 2. Updated copyright details. PJN / 24-12-2007 1. CSerialException::GetErrorMessage now uses the FORMAT_MESSAGE_IGNORE_INSERTS flag. For more information please see Raymond Chen's blog at http://blogs.msdn.com/oldnewthing/archive/2007/11/28/6564257.aspx. Thanks to Alexey Kuznetsov for reporting this issue. 2. Simplified the code in CSerialException::GetErrorMessage somewhat. 3. Optimized the CSerialException constructor code. 4. Code now uses newer C++ style casts instead of C style casts. 5. Reviewed and updated all the TRACE logging in the module 6. Replaced all calls to ZeroMemory with memset PJN / 30-12-2007 1. Updated the sample app to clean compile on VC 2008 2. CSerialException::GetErrorMessage now uses Checked::tcsncpy_s if compiled using VC 2005 or later. PJN / 18-05-2008 1. Updated copyright details. 2. Changed the actual values for Parity enum so that they are consistent with the Parity define values in the Windows SDK header file WinBase.h. This avoids the potential issue where you use the CSerialPort enum parity values in a call to the raw Win32 API calls. Thanks to Robert Krueger for reporting this issue. PJN / 21-06-2008 1. Code now compiles cleanly using Code Analysis (/analyze) 2. Updated code to compile correctly using _ATL_CSTRING_EXPLICIT_CONSTRUCTORS define 3. The code now only supports VC 2005 or later. 4. CSerialPort::Read, Write, GetOverlappedResult & WaitEvent now throw an exception irrespective of whether the last error is ERROR_IO_PENDING or not 5. Replaced all calls to ZeroMemory with memset PJN / 04-07-2008 1. Provided a version of the Open method which takes a string instead of a numeric port number value. This allows the code to support some virtual serial port packages which do not use device names of the form "COM%d". Thanks to David Balazic for suggesting this addition. PJN / 25-01-2012 1. Updated copyright details. 2. Updated sample app and class to compile cleanly on VC 2010 and later. PJN / 28-02-2015 1. Updated sample project settings to more modern default values. 2. Updated copyright details. 3. Reworked the CSerialPort and CSerialPortException classes to optionally compile without MFC. By default the classes now use STL classes and idioms but if you define CSERIALPORT_MFC_EXTENSTIONS the classes will revert back to the MFC behaviour. 4. Remove logic to use GetProcAddress to access CancelIO functionality. 5. Updated the code to clean compile on VC 2013 6. Added SAL annotations to all the code 7. Addition of a GetDefaultConfig method which takes a string 8. Addition of a SetDefaultConfig method which takes a string PJN / 26-04-2015 1. Removed unnecessary inclusion of WinError.h 2. Removed the CSerialPort::DataWaiting method as it depends on the port being open in overlapped mode. Instead client code can simply call CSerialPort::WaitEvent directly themselves. Removing this method also means that the CSerialPort::m_hEvent handle has not also been removed. 3. The CSerialPort::WriteEx method has been reworked to expose all the parameters of the underlying WriteFileEx API. This rework also fixes a memory leak in WriteEx which can sometimes occur. This reworks also means that the CSerialPort::_OnCompletion and CSerialPort::_OnCompletion methods have been removed. Thanks to Yufeng Huang for reporting this issue. 4. The CSerialPort::ReadEx method has been reworked to expose all the parameters of the underlying ReadFileEx API. This rework also fixes a memory leak in ReadEx which can sometimes occur. This reworks also means that the CSerialPort::_OnCompletion and CSerialPort::_OnCompletion methods have been removed. Thanks to Yufeng Huang for reporting this issue. Copyright (c) 1996 - 2015 by PJ Naughter (Web: www.naughter.com, Email: pjna@naughter.com) All rights reserved. Copyright / Usage Details: You are allowed to include the source code in any product (commercial, shareware, freeware or otherwise) when your product is released in binary form. You are allowed to modify the source code in any way you want except you cannot modify the copyright details at the top of each module. If you want to distribute source code with your application, then you are only allowed to distribute versions released by the author. This is to maintain a single distribution point for the source code. */ // Includes #include "pch.h" #include "SerialPort.h" #ifndef __ATLBASE_H__ #pragma message("To avoid this message, please put atlbase.h in your pre compiled header (normally stdafx.h)") #include <atlbase.h> #endif //#ifndef __ATLBASE_H__ // Defines / #ifdef CSERIALPORT_MFC_EXTENSIONS #ifdef _DEBUG #define new DEBUG_NEW #endif //#ifdef _DEBUG #endif //#ifdef CSERIALPORT_MFC_EXTENSIONS //Implementation /// #if _MSC_VER >= 1700 BOOL CSerialException::GetErrorMessage(_Out_z_cap_(nMaxError) LPTSTR lpszError, _In_ UINT nMaxError, _Out_opt_ PUINT pnHelpContext) #else BOOL CSerialException::GetErrorMessage(__out_ecount_z(nMaxError) LPTSTR lpszError, __in UINT nMaxError, __out_opt PUINT pnHelpContext) #endif { //Validate our parameters ATLASSERT(lpszError != NULL); if (pnHelpContext != NULL) *pnHelpContext = 0; //What will be the return value from this function (assume the worst) BOOL bSuccess = FALSE; LPTSTR lpBuffer; DWORD dwReturn = FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, m_dwError, MAKELANGID(LANG_NEUTRAL, SUBLANG_SYS_DEFAULT), reinterpret_cast<LPTSTR>(&lpBuffer), 0, NULL); if (dwReturn == 0) *lpszError = _T('\0'); else { bSuccess = TRUE; Checked::tcsncpy_s(lpszError, nMaxError, lpBuffer, _TRUNCATE); LocalFree(lpBuffer); } return bSuccess; } #ifdef CSERIALPORT_MFC_EXTENSIONS CString CSerialException::GetErrorMessage() { CString rVal; LPTSTR pstrError = rVal.GetBuffer(4096); GetErrorMessage(pstrError, 4096, NULL); rVal.ReleaseBuffer(); return rVal; } #endif //#ifdef CSERIALPORT_MFC_EXTENSIONS CSerialException::CSerialException(DWORD dwError) : m_dwError(dwError) { } #ifdef CSERIALPORT_MFC_EXTENSIONS #ifdef _DEBUG void CSerialException::Dump(_In_ CDumpContext& dc) const { CObject::Dump(dc); dc << _T("m_dwError = ") << m_dwError << _T("\n"); } #endif //#ifdef _DEBUG #endif //#ifdef CSERIALPORT_MFC_EXTENSIONS CSerialPort::CSerialPort() : m_hComm(INVALID_HANDLE_VALUE) { } CSerialPort::~CSerialPort() { Close(); } void CSerialPort::ThrowSerialException(_In_ DWORD dwError) { if (dwError == 0) dwError = ::GetLastError(); ATLTRACE(_T("Warning: throwing CSerialException for error %d\n"), dwError); #ifdef CSERIALPORT_MFC_EXTENSIONS CSerialException* pException = new CSerialException(dwError); THROW(pException); #else CSerialException e(dwError); throw e; #endif //#ifdef CSERIALPORT_MFC_EXTENSIONS } #ifdef CSERIALPORT_MFC_EXTENSIONS #ifdef _DEBUG void CSerialPort::Dump(CDumpContext& dc) const { dc << _T("m_hComm = ") << m_hComm << _T("\n"); } #endif //#ifdef _DEBUG #endif //#ifdef CSERIALPORT_MFC_EXTENSIONS void CSerialPort::Open(_In_z_ LPCTSTR pszPort, _In_ DWORD dwBaud, _In_ Parity parity, _In_ BYTE DataBits, _In_ StopBits stopBits, _In_ FlowControl fc, _In_ BOOL bOverlapped) { Close(); //In case we are already open //Call CreateFile to open the comms port m_hComm = CreateFile(pszPort, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, bOverlapped ? (FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED) : 0, NULL); if (m_hComm == INVALID_HANDLE_VALUE) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::Open, Failed to open the comms port, Error:%u\n"), dwLastError); //ThrowSerialException(dwLastError); return; } //Get the current state prior to changing it DCB dcb; dcb.DCBlength = sizeof(DCB); GetState(dcb); //Setup the baud rate dcb.BaudRate = dwBaud; //Setup the Parity switch (parity) { case EvenParity: { dcb.Parity = EVENPARITY; break; } case MarkParity: { dcb.Parity = MARKPARITY; break; } case NoParity: { dcb.Parity = NOPARITY; break; } case OddParity: { dcb.Parity = ODDPARITY; break; } case SpaceParity: { dcb.Parity = SPACEPARITY; break; } default: { ATLASSERT(FALSE); break; } } //Setup the data bits dcb.ByteSize = DataBits; //Setup the stop bits switch (stopBits) { case OneStopBit: { dcb.StopBits = ONESTOPBIT; break; } case OnePointFiveStopBits: { dcb.StopBits = ONE5STOPBITS; break; } case TwoStopBits: { dcb.StopBits = TWOSTOPBITS; break; } default: { ATLASSERT(FALSE); break; } } //Setup the flow control dcb.fDsrSensitivity = FALSE; switch (fc) { case NoFlowControl: { dcb.fOutxCtsFlow = FALSE; dcb.fOutxDsrFlow = FALSE; dcb.fOutX = FALSE; dcb.fInX = FALSE; break; } case CtsRtsFlowControl: { dcb.fOutxCtsFlow = TRUE; dcb.fOutxDsrFlow = FALSE; dcb.fRtsControl = RTS_CONTROL_HANDSHAKE; dcb.fOutX = FALSE; dcb.fInX = FALSE; break; } case CtsDtrFlowControl: { dcb.fOutxCtsFlow = TRUE; dcb.fOutxDsrFlow = FALSE; dcb.fDtrControl = DTR_CONTROL_HANDSHAKE; dcb.fOutX = FALSE; dcb.fInX = FALSE; break; } case DsrRtsFlowControl: { dcb.fOutxCtsFlow = FALSE; dcb.fOutxDsrFlow = TRUE; dcb.fRtsControl = RTS_CONTROL_HANDSHAKE; dcb.fOutX = FALSE; dcb.fInX = FALSE; break; } case DsrDtrFlowControl: { dcb.fOutxCtsFlow = FALSE; dcb.fOutxDsrFlow = TRUE; dcb.fDtrControl = DTR_CONTROL_HANDSHAKE; dcb.fOutX = FALSE; dcb.fInX = FALSE; break; } case XonXoffFlowControl: { dcb.fOutxCtsFlow = FALSE; dcb.fOutxDsrFlow = FALSE; dcb.fOutX = TRUE; dcb.fInX = TRUE; dcb.XonChar = 0x11; dcb.XoffChar = 0x13; dcb.XoffLim = 100; dcb.XonLim = 100; break; } default: { ATLASSERT(FALSE); break; } } //Now that we have all the settings in place, make the changes SetState(dcb); } void CSerialPort::Open(_In_ int nPort, _In_ DWORD dwBaud, _In_ Parity parity, _In_ BYTE DataBits, _In_ StopBits stopBits, _In_ FlowControl fc, _In_ BOOL bOverlapped) { //Form the string version of the port number TCHAR szPort[12]; _stprintf_s(szPort, sizeof(szPort) / sizeof(TCHAR), _T("\\\\.\\COM%d"), nPort); //Delegate the work to the other version of Open Open(szPort, dwBaud, parity, DataBits, stopBits, fc, bOverlapped); } void CSerialPort::Close() { if (IsOpen()) { //Close down the comms port CloseHandle(m_hComm); m_hComm = INVALID_HANDLE_VALUE; } } void CSerialPort::Attach(_In_ HANDLE hComm) { Close(); //Validate our parameters, now that the port has been closed ATLASSERT(m_hComm == INVALID_HANDLE_VALUE); m_hComm = hComm; } HANDLE CSerialPort::Detach() { //What will be the return value from this function HANDLE hComm = m_hComm; m_hComm = INVALID_HANDLE_VALUE; return hComm; } void CSerialPort::Read(_Out_writes_bytes_(dwNumberOfBytesToRead) __out_data_source(FILE) void* lpBuffer, _In_ DWORD dwNumberOfBytesToRead) { //Validate our parameters ATLASSERT(IsOpen()); DWORD dwBytesRead = 0; if (!ReadFile(m_hComm, lpBuffer, dwNumberOfBytesToRead, &dwBytesRead, NULL)) { DWORD dwLastError = GetLastError(); if (ERROR_IO_PENDING != dwLastError) ATLTRACE(_T("CSerialPort::Read, Failed in call to ReadFile, Error:%u\n"), dwLastError); // ThrowSerialException(dwLastError); } } void CSerialPort::Read(_Out_writes_bytes_to_opt_(dwNumberOfBytesToRead, *lpNumberOfBytesRead) __out_data_source(FILE) void* lpBuffer, _In_ DWORD dwNumberOfBytesToRead, _In_ OVERLAPPED& overlapped, _Inout_opt_ DWORD* lpNumberOfBytesRead) { //Validate our parameters ATLASSERT(IsOpen()); *lpNumberOfBytesRead = 0; if (overlapped.hEvent) ResetEvent(overlapped.hEvent); if (!ReadFile(m_hComm, lpBuffer, dwNumberOfBytesToRead, lpNumberOfBytesRead, &overlapped)) { DWORD dwLastError = GetLastError(); if (ERROR_IO_PENDING != dwLastError) { ATLTRACE(_T("CSerialPort::Read, Failed in call to ReadFile, Error:%u\n"), dwLastError); } // ThrowSerialException(dwLastError); } } void CSerialPort::ReadEx(_Out_writes_bytes_opt_(dwNumberOfBytesToRead) __out_data_source(FILE) LPVOID lpBuffer, _In_ DWORD dwNumberOfBytesToRead, _Inout_ LPOVERLAPPED lpOverlapped, _In_ LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine) { //Validate our parameters ATLASSERT(IsOpen()); if (!ReadFileEx(m_hComm, lpBuffer, dwNumberOfBytesToRead, lpOverlapped, lpCompletionRoutine)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::ReadEx, Failed in call to ReadFileEx, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } DWORD CSerialPort::Write(_In_reads_bytes_opt_(dwNumberOfBytesToWrite) const void* lpBuffer, _In_ DWORD dwNumberOfBytesToWrite) { //Validate our parameters ATLASSERT(IsOpen()); DWORD dwBytesWritten = 0; if (!WriteFile(m_hComm, lpBuffer, dwNumberOfBytesToWrite, &dwBytesWritten, NULL)) { DWORD dwLastError = GetLastError(); if (ERROR_IO_PENDING != dwLastError) ATLTRACE(_T("CSerialPort::Write, Failed in call to WriteFile, Error:%u\n"), dwLastError); //ThrowSerialException(dwLastError); } return dwBytesWritten; } void CSerialPort::Write(_In_reads_bytes_opt_(dwNumberOfBytesToWrite) const void* lpBuffer, _In_ DWORD dwNumberOfBytesToWrite, _In_ OVERLAPPED& overlapped, _Out_opt_ DWORD* lpNumberOfBytesWritten) { //Validate our parameters ATLASSERT(IsOpen()); if (!WriteFile(m_hComm, lpBuffer, dwNumberOfBytesToWrite, lpNumberOfBytesWritten, &overlapped)) { DWORD dwLastError = GetLastError(); if (ERROR_IO_PENDING != dwLastError) { ATLTRACE(_T("CSerialPort::Write, Failed in call to WriteFile, Error:%u\n"), dwLastError); } // ThrowSerialException(dwLastError); } } void CSerialPort::WriteEx(_In_reads_bytes_opt_(dwNumberOfBytesToWrite) LPCVOID lpBuffer, _In_ DWORD dwNumberOfBytesToWrite, _Inout_ LPOVERLAPPED lpOverlapped, _In_ LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine) { //Validate our parameters ATLASSERT(IsOpen()); if (!WriteFileEx(m_hComm, lpBuffer, dwNumberOfBytesToWrite, lpOverlapped, lpCompletionRoutine)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::WriteEx, Failed in call to WriteFileEx, Error:%u\n"), dwLastError); //ThrowSerialException(dwLastError); } } DWORD CSerialPort::GetOverlappedResult(_In_ OVERLAPPED& overlapped, _Out_ DWORD& dwBytesTransferred, _In_ BOOL bWait) { //Validate our parameters DWORD dwLastError = 0; ATLASSERT(IsOpen()); dwBytesTransferred = 0; if (!::GetOverlappedResult(m_hComm, &overlapped, &dwBytesTransferred, bWait)) { dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::GetOverlappedResult, Failed in call to GetOverlappedResult, Error:%u\n"), dwLastError); //ThrowSerialException(dwLastError); } return dwLastError; } void CSerialPort::CancelIo() { //Validate our parameters ATLASSERT(IsOpen()); if (!::CancelIo(m_hComm)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("Failed in call to CancelIO, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } DWORD CSerialPort::BytesWaiting() { //Validate our parameters //ATLASSERT(IsOpen()); if (!IsOpen()) return 0; //Check to see how many characters are unread COMSTAT stat; GetStatus(stat); return stat.cbInQue; } DWORD CSerialPort::BytesPending() { if (!IsOpen()) return 0; //Check to see how many characters are unwrite COMSTAT stat; GetStatus(stat); return stat.cbOutQue; } void CSerialPort::TransmitChar(_In_ char cChar) { //Validate our parameters ATLASSERT(IsOpen()); if (!TransmitCommChar(m_hComm, cChar)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::TransmitChar, Failed in call to TransmitCommChar, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::GetConfig(_In_ COMMCONFIG& config) { //Validate our parameters ATLASSERT(IsOpen()); DWORD dwSize = sizeof(COMMCONFIG); if (!GetCommConfig(m_hComm, &config, &dwSize)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::GetConfig, Failed in call to GetCommConfig, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::SetConfig(_In_ COMMCONFIG& config) { //Validate our parameters ATLASSERT(IsOpen()); DWORD dwSize = sizeof(COMMCONFIG); if (!SetCommConfig(m_hComm, &config, dwSize)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::SetConfig, Failed in call to SetCommConfig, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::SetBreak() { //Validate our parameters ATLASSERT(IsOpen()); if (!SetCommBreak(m_hComm)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::SetBreak, Failed in call to SetCommBreak, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::ClearBreak() { //Validate our parameters ATLASSERT(IsOpen()); if (!ClearCommBreak(m_hComm)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::ClearBreak, Failed in call to SetCommBreak, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::ClearError(_Out_ DWORD& dwErrors) { //Validate our parameters ATLASSERT(IsOpen()); if (!ClearCommError(m_hComm, &dwErrors, NULL)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::ClearError, Failed in call to ClearCommError, Error:%u\n"), dwLastError); //ThrowSerialException(dwLastError); } } void CSerialPort::GetDefaultConfig(_In_ int nPort, _Out_ COMMCONFIG& config) { //Create the device name as a string TCHAR szPort[12]; _stprintf_s(szPort, sizeof(szPort) / sizeof(TCHAR), _T("COM%d"), nPort); return GetDefaultConfig(szPort, config); } void CSerialPort::GetDefaultConfig(_In_z_ LPCTSTR pszPort, _Out_ COMMCONFIG& config) { DWORD dwSize = sizeof(COMMCONFIG); if (!GetDefaultCommConfig(pszPort, &config, &dwSize)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::GetDefaultConfig, Failed in call to GetDefaultCommConfig, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::SetDefaultConfig(_In_ int nPort, _In_ COMMCONFIG& config) { //Create the device name as a string TCHAR szPort[12]; _stprintf_s(szPort, sizeof(szPort) / sizeof(TCHAR), _T("COM%d"), nPort); return SetDefaultConfig(szPort, config); } void CSerialPort::SetDefaultConfig(_In_z_ LPCTSTR pszPort, _In_ COMMCONFIG& config) { DWORD dwSize = sizeof(COMMCONFIG); if (!SetDefaultCommConfig(pszPort, &config, dwSize)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::SetDefaultConfig, Failed in call to SetDefaultCommConfig, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::GetStatus(_Out_ COMSTAT& stat) { //Validate our parameters ATLASSERT(IsOpen()); DWORD dwErrors; if (!ClearCommError(m_hComm, &dwErrors, &stat)) { DWORD dwLastError = GetLastError(); stat.cbInQue = 0; ATLTRACE(_T("CSerialPort::GetStatus, Failed in call to ClearCommError, Error:%u\n"), dwLastError); // ThrowSerialException(dwLastError); } } void CSerialPort::GetState(_Out_ DCB& dcb) { //Validate our parameters ATLASSERT(IsOpen()); if (!GetCommState(m_hComm, &dcb)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::GetState, Failed in call to GetCommState, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::SetState(_In_ DCB& dcb) { //Validate our parameters ATLASSERT(IsOpen()); if (!SetCommState(m_hComm, &dcb)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::SetState, Failed in call to SetCommState, Error:%u\n"), dwLastError); // ThrowSerialException(dwLastError); } } void CSerialPort::Escape(_In_ DWORD dwFunc) { //Validate our parameters ATLASSERT(IsOpen()); if (!EscapeCommFunction(m_hComm, dwFunc)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::Escape, Failed in call to EscapeCommFunction, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::ClearDTR() { Escape(CLRDTR); } void CSerialPort::ClearRTS() { Escape(CLRRTS); } void CSerialPort::SetDTR() { Escape(SETDTR); } void CSerialPort::SetRTS() { Escape(SETRTS); } void CSerialPort::SetXOFF() { Escape(SETXOFF); } void CSerialPort::SetXON() { Escape(SETXON); } void CSerialPort::GetProperties(_Inout_ COMMPROP& properties) { //Validate our parameters ATLASSERT(IsOpen()); if (!GetCommProperties(m_hComm, &properties)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::GetProperties, Failed in call to GetCommProperties, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::GetModemStatus(_Out_ DWORD& dwModemStatus) { //Validate our parameters ATLASSERT(IsOpen()); if (!GetCommModemStatus(m_hComm, &dwModemStatus)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::GetModemStatus, Failed in call to GetCommModemStatus, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::SetMask(_In_ DWORD dwMask) { //Validate our parameters ATLASSERT(IsOpen()); if (!SetCommMask(m_hComm, dwMask)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::SetMask, Failed in call to SetCommMask, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::GetMask(_Out_ DWORD& dwMask) { //Validate our parameters ATLASSERT(IsOpen()); if (!GetCommMask(m_hComm, &dwMask)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::GetMask, Failed in call to GetCommMask, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::Flush() { //Validate our parameters ATLASSERT(IsOpen()); if (!FlushFileBuffers(m_hComm)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::Flush, Failed in call to FlushFileBuffers, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::Purge(_In_ DWORD dwFlags) { //Validate our parameters ATLASSERT(IsOpen()); if (!PurgeComm(m_hComm, dwFlags)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::Purge, Failed in call to PurgeComm, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::TerminateOutstandingWrites() { Purge(PURGE_TXABORT); } void CSerialPort::TerminateOutstandingReads() { Purge(PURGE_RXABORT); } void CSerialPort::ClearWriteBuffer() { Purge(PURGE_TXCLEAR); } void CSerialPort::ClearReadBuffer() { Purge(PURGE_RXCLEAR); } void CSerialPort::Setup(_In_ DWORD dwInQueue, _In_ DWORD dwOutQueue) { //Validate our parameters ATLASSERT(IsOpen()); if (!SetupComm(m_hComm, dwInQueue, dwOutQueue)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::Setup, Failed in call to SetupComm, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::SetTimeouts(_In_ COMMTIMEOUTS& timeouts) { //Validate our parameters ATLASSERT(IsOpen()); if (!SetCommTimeouts(m_hComm, &timeouts)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::SetTimeouts, Failed in call to SetCommTimeouts, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::GetTimeouts(_Out_ COMMTIMEOUTS& timeouts) { //Validate our parameters ATLASSERT(IsOpen()); if (!GetCommTimeouts(m_hComm, &timeouts)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::GetTimeouts, Failed in call to GetCommTimeouts, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } void CSerialPort::Set0Timeout() { COMMTIMEOUTS Timeouts; memset(&Timeouts, 0, sizeof(Timeouts)); Timeouts.ReadIntervalTimeout = MAXDWORD; SetTimeouts(Timeouts); } void CSerialPort::Set0WriteTimeout() { COMMTIMEOUTS Timeouts; GetTimeouts(Timeouts); Timeouts.WriteTotalTimeoutMultiplier = 0; Timeouts.WriteTotalTimeoutConstant = 0; SetTimeouts(Timeouts); } void CSerialPort::Set0ReadTimeout() { COMMTIMEOUTS Timeouts; GetTimeouts(Timeouts); Timeouts.ReadIntervalTimeout = MAXDWORD; Timeouts.ReadTotalTimeoutMultiplier = 0; Timeouts.ReadTotalTimeoutConstant = 0; SetTimeouts(Timeouts); } void CSerialPort::WaitEvent(_Inout_ DWORD& dwMask) { //Validate our parameters ATLASSERT(IsOpen()); if (!WaitCommEvent(m_hComm, &dwMask, NULL)) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::WaitEvent, Failed in call to WaitCommEvent, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } } BOOL CSerialPort::WaitEvent(_Inout_ DWORD& dwMask, _Inout_ OVERLAPPED& overlapped) { //Validate our parameters ATLASSERT(IsOpen()); ATLASSERT(overlapped.hEvent != NULL); BOOL bSuccess = WaitCommEvent(m_hComm, &dwMask, &overlapped); if (!bSuccess) { DWORD dwLastError = GetLastError(); ATLTRACE(_T("CSerialPort::WaitEvent, Failed in call to WaitCommEvent, Error:%u\n"), dwLastError); ThrowSerialException(dwLastError); } return bSuccess; } #pragma once #include "afxwin.h" // 自定义串口异常类 class CSerialException : public CException { public: DWORD m_dwError; CSerialException(DWORD dwError); }; // 串口类声明 class CSerialPort { public: enum Parity { None, Odd, Even }; enum StopBits { One = 1, OnePointFive = 2, Two = 3 }; CSerialPort(); virtual ~CSerialPort(); // 添加 virtual 关键字 BOOL Open(LPCTSTR lpszPort, DWORD dwBaudRate, Parity parity, BYTE byDataBits, StopBits stopBits); void Close(); BOOL IsOpen() const { return m_hComm != INVALID_HANDLE_VALUE; } DWORD Write(const void* lpBuf, DWORD dwCount); DWORD Read(void* lpBuf, DWORD dwCount); DWORD BytesWaiting(); void Set0Timeout(); private: HANDLE m_hComm; }; // CPCMFCDlg 对话框 class CPCMFCDlg : public CDialogEx { public: CPCMFCDlg(CWnd* pParent = nullptr); virtual ~CPCMFCDlg(); #ifdef AFX_DESIGN_TIME enum { IDD = IDD_PCMFC_DIALOG }; #endif protected: virtual void DoDataExchange(CDataExchange* pDX); virtual BOOL OnInitDialog(); protected: HICON m_hIcon; // 控件变量 CComboBox m_cbPort; CComboBox m_cbBaud; CComboBox m_cbParity; CComboBox m_cbDate; CComboBox m_cbStop; CListBox m_listStatus; // 数据变量 CString m_strTime1; CString m_strTime2; CString m_strTime3; // 状态变量 BOOL m_bConnected; BOOL m_bTimerActive; BOOL m_bThreadRunning; // 串口对象 CSerialPort m_SerialPort; HANDLE m_hThread; // 辅助函数 void UpdateControls(); UINT ReadThreadFunc(); static UINT ReadThread(LPVOID pParam); BOOL ValidateTimeFormat(const CString& strTime); // 消息处理 DECLARE_MESSAGE_MAP() afx_msg void OnPaint(); afx_msg HCURSOR OnQueryDragIcon(); afx_msg void OnBnClickedBtnOpen(); afx_msg void OnBnClickedBtnClose(); afx_msg void OnBnClickedBtnFeedNow(); afx_msg void OnBnClickedBtnFeedTimer(); afx_msg LRESULT OnUpdateStatus(WPARAM wParam, LPARAM lParam); afx_msg void OnTimer(UINT_PTR nIDEvent); afx_msg void OnDestroy(); }; #include "pch.h" #include "PCMFC.h" #include "PCMFCDlg.h" #include "afxdialogex.h" #include <winbase.h> #include <tchar.h> #include <atlstr.h> #ifdef _DEBUG #define new DEBUG_NEW #endif #define FEED_COMMAND 0x01 #define COMPLETE_SIGNAL 0xFF #define WM_UPDATE_STATUS (WM_USER + 100) // CSerialException 实现 CSerialException::CSerialException(DWORD dwError) : m_dwError(dwError) {} // CSerialPort 成员函数实现 CSerialPort::CSerialPort() : m_hComm(INVALID_HANDLE_VALUE) {} CSerialPort::~CSerialPort() { if (IsOpen()) Close(); } BOOL CSerialPort::Open(LPCTSTR lpszPort, DWORD dwBaudRate, Parity parity, BYTE byDataBits, StopBits stopBits) { m_hComm = CreateFile(lpszPort, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL); if (m_hComm == INVALID_HANDLE_VALUE) throw new CSerialException(GetLastError()); DCB dcb = { 0 }; dcb.DCBlength = sizeof(DCB); if (!GetCommState(m_hComm, &dcb)) throw new CSerialException(GetLastError()); dcb.BaudRate = dwBaudRate; dcb.ByteSize = byDataBits; switch (parity) { case None: dcb.Parity = NOPARITY; break; case Odd: dcb.Parity = ODDPARITY; break; case Even: dcb.Parity = EVENPARITY; break; } switch (stopBits) { case One: dcb.StopBits = ONESTOPBIT; break; case OnePointFive: dcb.StopBits = ONE5STOPBITS; break; case Two: dcb.StopBits = TWOSTOPBITS; break; } dcb.fBinary = TRUE; dcb.fDtrControl = DTR_CONTROL_ENABLE; dcb.fRtsControl = RTS_CONTROL_ENABLE; if (!SetCommState(m_hComm, &dcb)) throw new CSerialException(GetLastError()); // 设置超时 COMMTIMEOUTS timeouts = { 0 }; timeouts.ReadIntervalTimeout = 50; timeouts.ReadTotalTimeoutConstant = 50; timeouts.ReadTotalTimeoutMultiplier = 10; timeouts.WriteTotalTimeoutConstant = 50; timeouts.WriteTotalTimeoutMultiplier = 10; if (!SetCommTimeouts(m_hComm, &timeouts)) throw new CSerialException(GetLastError()); return TRUE; } void CSerialPort::Close() { if (m_hComm != INVALID_HANDLE_VALUE) { CloseHandle(m_hComm); m_hComm = INVALID_HANDLE_VALUE; } } DWORD CSerialPort::Write(const void* lpBuf, DWORD dwCount) { DWORD dwBytesWritten = 0; OVERLAPPED ov = { 0 }; ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL); if (!WriteFile(m_hComm, lpBuf, dwCount, &dwBytesWritten, &ov)) { if (GetLastError() == ERROR_IO_PENDING) { WaitForSingleObject(ov.hEvent, INFINITE); GetOverlappedResult(m_hComm, &ov, &dwBytesWritten, FALSE); } else { throw new CSerialException(GetLastError()); } } CloseHandle(ov.hEvent); return dwBytesWritten; } DWORD CSerialPort::Read(void* lpBuf, DWORD dwCount) { DWORD dwBytesRead = 0; OVERLAPPED ov = { 0 }; ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL); if (!ReadFile(m_hComm, lpBuf, dwCount, &dwBytesRead, &ov)) { if (GetLastError() == ERROR_IO_PENDING) { WaitForSingleObject(ov.hEvent, INFINITE); GetOverlappedResult(m_hComm, &ov, &dwBytesRead, FALSE); } else { throw new CSerialException(GetLastError()); } } CloseHandle(ov.hEvent); return dwBytesRead; } DWORD CSerialPort::BytesWaiting() { COMSTAT comStat; DWORD dwErrors; if (!ClearCommError(m_hComm, &dwErrors, &comStat)) throw new CSerialException(GetLastError()); return comStat.cbInQue; } void CSerialPort::Set0Timeout() { COMMTIMEOUTS timeouts = { 0 }; timeouts.ReadIntervalTimeout = MAXDWORD; timeouts.ReadTotalTimeoutConstant = 0; timeouts.ReadTotalTimeoutMultiplier = 0; timeouts.WriteTotalTimeoutMultiplier = 0; timeouts.WriteTotalTimeoutConstant = 0; if (!SetCommTimeouts(m_hComm, &timeouts)) throw new CSerialException(GetLastError()); } // CPCMFCDlg 实现 CPCMFCDlg::CPCMFCDlg(CWnd* pParent) : CDialogEx(IDD_PCMFC_DIALOG, pParent) , m_strTime1(_T("08:00")) , m_strTime2(_T("12:00")) , m_strTime3(_T("18:00")) , m_bConnected(FALSE) , m_bTimerActive(FALSE) , m_bThreadRunning(FALSE) , m_hThread(NULL) { m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); } CPCMFCDlg::~CPCMFCDlg() { if (m_hThread) { CloseHandle(m_hThread); } } void CPCMFCDlg::DoDataExchange(CDataExchange* pDX) { CDialogEx::DoDataExchange(pDX); DDX_Control(pDX, IDC_COMBO_PORT, m_cbPort); DDX_Control(pDX, IDC_COMBO_BAUD, m_cbBaud); DDX_Control(pDX, IDC_COMBO_PARITY, m_cbParity); DDX_Control(pDX, IDC_COMBO_DATA, m_cbDate); DDX_Control(pDX, IDC_COMBO_STOP, m_cbStop); DDX_Control(pDX, IDC_LIST, m_listStatus); DDX_Text(pDX, IDC_EDIT_TIME1, m_strTime1); DDX_Text(pDX, IDC_EDIT_TIME2, m_strTime2); DDX_Text(pDX, IDC_EDIT_TIME3, m_strTime3); } BEGIN_MESSAGE_MAP(CPCMFCDlg, CDialogEx) ON_WM_PAINT() ON_WM_QUERYDRAGICON() ON_BN_CLICKED(IDC_BUTTON_OPEN, &CPCMFCDlg::OnBnClickedBtnOpen) ON_BN_CLICKED(IDC_BUTTON_CLOSE, &CPCMFCDlg::OnBnClickedBtnClose) ON_BN_CLICKED(IDC_BUTTON_NOWFEED, &CPCMFCDlg::OnBnClickedBtnFeedNow) ON_BN_CLICKED(IDC_BUTTON_TIMEFEED, &CPCMFCDlg::OnBnClickedBtnFeedTimer) ON_MESSAGE(WM_UPDATE_STATUS, &CPCMFCDlg::OnUpdateStatus) ON_WM_TIMER() ON_WM_DESTROY() END_MESSAGE_MAP() BOOL CPCMFCDlg::OnInitDialog() { CDialogEx::OnInitDialog(); SetIcon(m_hIcon, TRUE); SetIcon(m_hIcon, FALSE); // 初始化串口选择下拉框 for (int i = 1; i <= 16; i++) { CString port; port.Format(_T("COM%d"), i); m_cbPort.AddString(port); } m_cbPort.SetCurSel(0); // 初始化波特率下拉框 CString baudRates[] = { _T("9600"), _T("19200"), _T("38400"), _T("57600"), _T("115200") }; for (auto& baud : baudRates) { m_cbBaud.AddString(baud); } m_cbBaud.SetCurSel(0); // 初始化校验位下拉框 CString parityOptions[] = { _T("None"), _T("Odd"), _T("Even") }; for (auto& parity : parityOptions) { m_cbParity.AddString(parity); } m_cbParity.SetCurSel(0); // 初始化数据位下拉框 CString dataBits[] = { _T("5"), _T("6"), _T("7"), _T("8") }; for (auto& bits : dataBits) { m_cbDate.AddString(bits); } m_cbDate.SetCurSel(3); // 初始化停止位下拉框 CString stopBits[] = { _T("1"), _T("1.5"), _T("2") }; for (auto& stop : stopBits) { m_cbStop.AddString(stop); } m_cbStop.SetCurSel(0); // 初始禁用控件 UpdateControls(); return TRUE; } void CPCMFCDlg::UpdateControls() { BOOL bConnected = m_SerialPort.IsOpen(); GetDlgItem(IDC_BUTTON_OPEN)->EnableWindow(!bConnected); GetDlgItem(IDC_BUTTON_CLOSE)->EnableWindow(bConnected); GetDlgItem(IDC_BUTTON_NOWFEED)->EnableWindow(bConnected); GetDlgItem(IDC_BUTTON_TIMEFEED)->EnableWindow(bConnected); BOOL bTimerActive = m_bTimerActive; GetDlgItem(IDC_EDIT_TIME1)->EnableWindow(bConnected && !bTimerActive); GetDlgItem(IDC_EDIT_TIME2)->EnableWindow(bConnected && !bTimerActive); GetDlgItem(IDC_EDIT_TIME3)->EnableWindow(bConnected && !bTimerActive); } BOOL CPCMFCDlg::ValidateTimeFormat(const CString& strTime) { if (strTime.GetLength() != 5) return FALSE; if (strTime[2] != ':') return FALSE; int hour = _ttoi(strTime.Left(2)); int minute = _ttoi(strTime.Mid(3)); return (hour >= 0 && hour <= 23) && (minute >= 0 && minute <= 59); } UINT CPCMFCDlg::ReadThread(LPVOID pParam) { CPCMFCDlg* pDlg = (CPCMFCDlg*)pParam; return pDlg->ReadThreadFunc(); } UINT CPCMFCDlg::ReadThreadFunc() { BYTE buffer[1]; while (m_bThreadRunning) { try { DWORD dwBytes = m_SerialPort.BytesWaiting(); if (dwBytes > 0) { if (m_SerialPort.Read(buffer, 1) > 0) { if (buffer[0] == COMPLETE_SIGNAL) { CString* pMsg = new CString(_T("喂食操作完成")); PostMessage(WM_UPDATE_STATUS, (WPARAM)pMsg, 0); } } } Sleep(50); } catch (CSerialException* e) { CString* pMsg = new CString(); pMsg->Format(_T("串口读取错误: %d"), e->m_dwError); PostMessage(WM_UPDATE_STATUS, (WPARAM)pMsg, 0); delete e; break; } } return 0; } void CPCMFCDlg::OnBnClickedBtnOpen() { CString strPort; m_cbPort.GetWindowText(strPort); strPort = _T("\\\\.\\") + strPort; CString strBaud; m_cbBaud.GetLBText(m_cbBaud.GetCurSel(), strBaud); DWORD dwBaud = _ttoi(strBaud); int nParity = m_cbParity.GetCurSel(); CString strDataBits; m_cbDate.GetLBText(m_cbDate.GetCurSel(), strDataBits); BYTE byDataBits = (BYTE)_ttoi(strDataBits); int nStopBits = m_cbStop.GetCurSel(); try { CSerialPort::Parity parity = static_cast<CSerialPort::Parity>(nParity); CSerialPort::StopBits stopBits = static_cast<CSerialPort::StopBits>(nStopBits); m_SerialPort.Open(strPort, dwBaud, parity, byDataBits, stopBits); m_SerialPort.Set0Timeout(); m_bConnected = TRUE; m_bThreadRunning = TRUE; m_hThread = (HANDLE)_beginthreadex(NULL, 0, ReadThread, this, 0, NULL); m_listStatus.AddString(_T("串口打开成功")); } catch (CSerialException* e) { CString strError; strError.Format(_T("打开串口失败: 错误代码 %d"), e->m_dwError); m_listStatus.AddString(strError); delete e; m_bConnected = FALSE; } UpdateControls(); } void CPCMFCDlg::OnBnClickedBtnClose() { m_bThreadRunning = FALSE; if (m_hThread) { WaitForSingleObject(m_hThread, 1000); CloseHandle(m_hThread); m_hThread = NULL; } try { if (m_SerialPort.IsOpen()) { m_SerialPort.Close(); m_listStatus.AddString(_T("串口已关闭")); } } catch (CSerialException* e) { delete e; } m_bConnected = FALSE; UpdateControls(); } void CPCMFCDlg::OnBnClickedBtnFeedNow() { BYTE cmd = FEED_COMMAND; try { if (m_SerialPort.IsOpen()) { m_SerialPort.Write(&cmd, 1); m_listStatus.AddString(_T("喂食命令已发送")); } } catch (CSerialException* e) { CString strError; strError.Format(_T("发送失败: 错误代码 %d"), e->m_dwError); m_listStatus.AddString(strError); delete e; } } void CPCMFCDlg::OnBnClickedBtnFeedTimer() { if (m_bTimerActive) { KillTimer(1); m_bTimerActive = FALSE; GetDlgItem(IDC_BUTTON_TIMEFEED)->SetWindowText(_T("开始定时")); m_listStatus.AddString(_T("定时器已停止")); } else { UpdateData(TRUE); // 验证时间格式 if (!ValidateTimeFormat(m_strTime1) || !ValidateTimeFormat(m_strTime2) || !ValidateTimeFormat(m_strTime3)) { MessageBox(_T("时间格式无效! 请使用HH:MM格式"), _T("错误"), MB_ICONERROR); return; } m_bTimerActive = TRUE; SetTimer(1, 1000, NULL); // 每秒检查一次 GetDlgItem(IDC_BUTTON_TIMEFEED)->SetWindowText(_T("停止定时")); m_listStatus.AddString(_T("定时器已启动")); } UpdateControls(); } void CPCMFCDlg::OnTimer(UINT_PTR nIDEvent) { if (nIDEvent == 1) { CTime now = CTime::GetCurrentTime(); CString strNow = now.Format(_T("%H:%M")); if (strNow == m_strTime1 || strNow == m_strTime2 || strNow == m_strTime3) { OnBnClickedBtnFeedNow(); } } CDialogEx::OnTimer(nIDEvent); } LRESULT CPCMFCDlg::OnUpdateStatus(WPARAM wParam, LPARAM lParam) { CString* pStr = (CString*)wParam; if (pStr) { m_listStatus.AddString(*pStr); delete pStr; } return 0; } void CPCMFCDlg::OnDestroy() { CDialogEx::OnDestroy(); if (m_bTimerActive) { KillTimer(1); } m_bThreadRunning = FALSE; if (m_hThread) { WaitForSingleObject(m_hThread, 1000); CloseHandle(m_hThread); m_hThread = NULL; } if (m_SerialPort.IsOpen()) { m_SerialPort.Close(); } } void CPCMFCDlg::OnPaint() { if (IsIconic()) { CPaintDC dc(this); SendMessage(WM_ICONERASEBKGND, reinterpret_cast<WPARAM>(dc.GetSafeHdc()), 0); int cxIcon = GetSystemMetrics(SM_CXICON); int cyIcon = GetSystemMetrics(SM_CYICON); CRect rect; GetClientRect(&rect); int x = (rect.Width() - cxIcon + 1) / 2; int y = (rect.Height() - cyIcon + 1) / 2; dc.DrawIcon(x, y, m_hIcon); } else { CDialogEx::OnPaint(); } } HCURSOR CPCMFCDlg::OnQueryDragIcon() { return static_cast<HCURSOR>(m_hIcon); } "public: void __cdecl CSerialPort::Set0Timeout(void)" (?Set0Timeout@CSerialPort@@QEAAXXZ) 已经在 PCMFCDlg.obj 中定义 "public: unsigned long __cdecl CSerialPort::BytesWaiting(void)" (?BytesWaiting@CSerialPort@@QEAAKXZ) 已经在 PCMFCDlg.obj 中定义 "public: unsigned long __cdecl CSerialPort::Write(void const *,unsigned long)" (?Write@CSerialPort@@QEAAKPEBXK@Z) 已经在 PCMFCDlg.obj 中定义 "public: void __cdecl CSerialPort::Close(void)" (?Close@CSerialPort@@QEAAXXZ) 已经在 PCMFCDlg.obj 中定义 "public: virtual __cdecl CSerialPort::~CSerialPort(void)" (??1CSerialPort@@UEAA@XZ) 已经在 PCMFCDlg.obj 中定义 "public: __cdecl CSerialPort::CSerialPort(void)" (??0CSerialPort@@QEAA@XZ) 已经在 PCMFCDlg.obj 中定义 "public: __cdecl CSerialException::CSerialException(unsigned long)" (??0CSerialException@@QEAA@K@Z) 已经在 PCMFCDlg.obj 中定义 找到一个或多个多重定义的符号 请你解决这些问题
06-04
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值