4 Values whose Sum is 0
Time Limit:15000MS Memory Limit:228000KB 64bit IO Format:%I64d
& %I64uDescription
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2 28 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
题意
给 n * 4 (0 < n <= 4000)的数表,在每列中取一个数,使四个数相加和为 0 。
分析
很明显直接枚举会爆掉,所以两两分组求和之后二分查找。
本题有个坑,当数据为
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
时,总数应为256
AC代码如下
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 4000+10;
int arr[N][4];
int sumab[N*N],sumcd[N*N];
int main()
{
int n;
scanf("%d",&n);
for(int i = 0; i < n; i++)
for(int j = 0; j < 4; j++)
scanf("%d",&arr[i][j]);
int t = 0;
for(int i = 0; i < n; i++)<span style="white-space:pre"> </span>//分组求和
for(int j = 0; j < n; j++)
sumab[t++] = arr[i][0] + arr[j][1];
int tt = 0;
for(int i = 0; i < n; i++)<span style="white-space:pre"> </span>//分组求和
for(int j = 0; j < n; j++)
sumcd[tt++] = arr[i][2] + arr[j][3];
int sum = 0;
sort(sumcd,sumcd+tt);
for(int i = 0; i < t; i++)<span style="white-space:pre"> </span>//二分查找
{
int x = lower_bound(sumcd,sumcd+tt,0-sumab[i]) - sumcd;
for(int j = x; j < tt; j++)
{
if(sumcd[j] + sumab[i] > 0) break;
if(sumcd[j] + sumab[i] == 0) sum++;<span style="white-space:pre"> </span>//跳坑
}
}
printf("%d\n",sum);
return 0;
}