HDU1032 The 3n + 1 problem

本文探讨了一个算法问题,目标是计算给定区间内整数序列的最大循环长度。通过直接暴力加存储过程的方法解决,代码示例展示了如何高效处理并输出结果。

Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu

Description

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

 

Consider the following algorithm:

 
1. input n

2. print n

3. if n = 1 then STOP

4. if n is odd then tex2html_wrap_inline44

5. else tex2html_wrap_inline46

6. GOTO 2

 

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

You can assume that no operation overflows a 32-bit integer.

Output

For each pair of input integers i and j you should output ij, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

 Sample Input

1 10
100 200
201 210
900 1000

 

Sample Output

1 10 20
100 200 125
201 210 89
900 1000 174


分析

 

直接暴力+存储过程量,遇到存储过的过程量直接返回。

 

AC代码如下:

 

#include <cstdio>
#include <cstring>
#include <algorithm>
#define max(a,b) a>b?a:b
#define min(a,b) a<b?a:b
#define maxn 1000000

using namespace std;

int num[maxn];

int op(long long int n)
{
    if(n == 1) return 1;               //运算处理
    if(n & 1)
        n += (n<<1) + 1;
    else
        n >>= 1;
    if(n < maxn)
    {
        if(!num[n]) num[n] = op(n) ;
        return num[n] + 1;             //直接取用已经处理过的数据,减少时间
    }
    return op(n) + 1;
}

int main()
{
    int a,b;
    memset(num,0,sizeof(num));
    while(~scanf("%d%d",&a,&b))
    {
        int y = max(a,b);
        int x = min(a,b);
        int res = 0 ,step;
        for(int i = x ; i <= y ; i++)
        {
            if((step = op(i)) > res)
                res = step;
        }
        printf("%d %d %d\n",a,b,res);
    }
    return 0;
}


第二份AC代码,占用空间少,时间相对较多:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int Fun (long long int n)
{
    int count = 1;
    while(1)
    {
        if ( n == 1 ) break;
        if ( n % 2 ) n = n*3+1;
        else n /=2;
        count++;
    }
    return count;
}
int main()
{
    int i,j,a[10000],x[2],y[2],max;

    while(scanf("%d%d",&x[0],&y[0]) != EOF)
    {
        x[1] = x[0]<y[0]?x[0]:y[0];
        y[1] = x[0]<y[0]?y[0]:x[0];
        memset(a,0,sizeof(a));
        j = 0;
        for ( i = x[1]; i <= y[1]; i ++ )    //存储空间少
        {
            a[j++] = Fun(i);
        }
        max = a[0];
        for ( i = 1; i <= y[1]-x[1]; i ++ )
        {
            if ( a[i] > max ) max = a[i];
        }
        printf("%d %d %d\n",x[0],y[0],max);
    }
    return 0;
}

内容概要:本文档是一份关于交换路由配置的学习笔记,系统地介绍了网络设备的远程管理、交换机与路由器的核心配置技术。内容涵盖Telnet、SSH、Console三种远程控制方式的配置方法;详细讲解了VLAN划分原理及Access、Trunk、Hybrid端口的工作机制,以及端口镜像、端口汇聚、端口隔离等交换技术;深入解析了STP、MSTP、RSTP生成树协议的作用与配置步骤;在路由部分,涵盖了IP地址配置、DHCP服务部署(接口池与全局池)、NAT转换(静态与动态)、静态路由、RIP与OSPF动态路由协议的配置,并介绍了策略路由和ACL访问控制列表的应用;最后简要说明了华为防火墙的安全区域划分与基本安全策略配置。; 适合人群:具备一定网络基础知识,从事网络工程、运维或相关技术岗位1-3年的技术人员,以及准备参加HCIA/CCNA等认证考试的学习者。; 使用场景及目标:①掌握企业网络中常见的交换与路由配置技能,提升实际操作能力;②理解VLAN、STP、OSPF、NAT、ACL等核心技术原理并能独立完成中小型网络搭建与调试;③通过命令示例熟悉华为设备CLI配置逻辑,为项目实施和故障排查提供参考。; 阅读建议:此笔记以实用配置为主,建议结合模拟器(如eNSP或Packet Tracer)动手实践每一条命令,对照拓扑理解数据流向,重点关注VLAN间通信、路由选择机制、安全策略控制等关键环节,并注意不同设备型号间的命令差异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值