| Time Limit: 3000MS | Memory Limit: Unknown | 64bit IO Format: %lld & %llu |
Description
Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.
Consider the following algorithm:
1. input n
2. print n
3. if n = 1 then STOP
4. if n is odd then ![]()
5. else ![]()
6. GOTO 2
Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)
Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.
For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.
Input
The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.
You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.
You can assume that no operation overflows a 32-bit integer.
Output
For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).
Sample Input
1 10 100 200 201 210 900 1000
Sample Output
1 10 20 100 200 125 201 210 89 900 1000 174
分析
直接暴力+存储过程量,遇到存储过的过程量直接返回。
AC代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
#define max(a,b) a>b?a:b
#define min(a,b) a<b?a:b
#define maxn 1000000
using namespace std;
int num[maxn];
int op(long long int n)
{
if(n == 1) return 1; //运算处理
if(n & 1)
n += (n<<1) + 1;
else
n >>= 1;
if(n < maxn)
{
if(!num[n]) num[n] = op(n) ;
return num[n] + 1; //直接取用已经处理过的数据,减少时间
}
return op(n) + 1;
}
int main()
{
int a,b;
memset(num,0,sizeof(num));
while(~scanf("%d%d",&a,&b))
{
int y = max(a,b);
int x = min(a,b);
int res = 0 ,step;
for(int i = x ; i <= y ; i++)
{
if((step = op(i)) > res)
res = step;
}
printf("%d %d %d\n",a,b,res);
}
return 0;
}
第二份AC代码,占用空间少,时间相对较多:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int Fun (long long int n)
{
int count = 1;
while(1)
{
if ( n == 1 ) break;
if ( n % 2 ) n = n*3+1;
else n /=2;
count++;
}
return count;
}
int main()
{
int i,j,a[10000],x[2],y[2],max;
while(scanf("%d%d",&x[0],&y[0]) != EOF)
{
x[1] = x[0]<y[0]?x[0]:y[0];
y[1] = x[0]<y[0]?y[0]:x[0];
memset(a,0,sizeof(a));
j = 0;
for ( i = x[1]; i <= y[1]; i ++ ) //存储空间少
{
a[j++] = Fun(i);
}
max = a[0];
for ( i = 1; i <= y[1]-x[1]; i ++ )
{
if ( a[i] > max ) max = a[i];
}
printf("%d %d %d\n",x[0],y[0],max);
}
return 0;
}

本文探讨了一个算法问题,目标是计算给定区间内整数序列的最大循环长度。通过直接暴力加存储过程的方法解决,代码示例展示了如何高效处理并输出结果。
11万+

被折叠的 条评论
为什么被折叠?



