BERT embedding 降维--BERT whitening

该博客介绍了如何利用BERT-whitening技术将高维嵌入向量(如768维)降至256维。通过计算kernel和bias,实现向量的线性变换,并进行标准化处理。文章引用了苏剑林的两篇博客作为参考,讨论了BERT-whitening的超参数调整及其效果。

利用BERT whitening可以将embedding 比如768维降到256维

def compute_kernel_bias(vecs, n_components=256):
    """计算kernel和bias
    vecs.shape = [num_samples, embedding_size],
    最后的变换:y = (x + bias).dot(kernel)
    """
    mu = vecs.mean(axis=0, keepdims=True)
    cov 
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI强仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值