0 1 2 3 4 5
8703 1597042824370 2 1 4 1 1
8704 1597042829380 2 1 4 1 1
8705 1597042834397 2 1 4 1 1
8706 1597042839529 2 1 4 1 1
8707 1597042844495 2 1 4 1 1
... ... .. .. .. .. ..
9698 1597098576457 2 1 4 0 0
9699 1597098581419 2 1 4 0 0
9700 1597098586385 2 1 4 0 0
9701 1597098591377 2 1 4 0 0
9702 1597098596495 2 1 4 0 0
0 1 2 3 4 5
8703 2020-08-10 15:00:24 2 1 4 1 1
8704 2020-08-10 15:00:29 2 1 4 1 1
8705 2020-08-10 15:00:34 2 1 4 1 1
8706 2020-08-10 15:00:39 2 1 4 1 1
8707 2020-08-10 15:00:44 2 1 4 1 1
... ... .. .. .. .. ..
9698 2020-08-11 06:29:36 2 1 4 0 0
9699 2020-08-11 06:29:41 2 1 4 0 0
9700 2020-08-11 06:29:46 2 1 4 0 0
9701 2020-08-11 06:29:51 2 1 4 0 0
9702 2020-08-11 06:29:56 2 1 4 0 0
device_df = pd.DataFrame(device_data).fillna(0)
result = pd.eval(f"device_df.loc[{et_strap}>=device_df[0]>={st_strap}]")
if len(result) == 0:
result = device_df[-1000:]
result_pansas = result[want_index]
print(result_pansas)
result_pansas[0] = pd.to_datetime(result_pansas[0].values, utc=True, unit='ms').tz_convert(
"Asia/Shanghai").to_period("S")
‘W’, ‘D’, ‘T’, ‘S’, ‘L’, ‘U’, or ‘N’
‘days’ or ‘day’
‘hours’, ‘hour’, ‘hr’, or ‘h’
‘minutes’, ‘minute’, ‘min’, or ‘m’
‘seconds’, ‘second’, or ‘sec’
‘milliseconds’, ‘millisecond’, ‘millis’, or ‘milli’
‘microseconds’, ‘microsecond’, ‘micros’, or ‘micro’
‘nanoseconds’, ‘nanosecond’, ‘nanos’, ‘nano’, or ‘ns’