分布式训练同步梯度出现形状不一致的解决方案

1、问题描述

          为了加快大模型的训练速度,采用了分布式训练策略,基于MultiWorkerServerStrategy模式,集群之间采用Ring—Reduce的通信机制,不同节点在同步梯度会借助collective_ops.all_gather方法将梯度进行汇聚收集,汇聚过程出现了:

allreduce_1/CollectiveGather_1 Inconsitent output shapes,got[20],but expected is [22]

allreduce_1/CollectiveGather  Inconsitent output shapes,got[16,8],but expected is [20,8]

从而终止了训练继续进行。

2、原因分析

         直观看是因为不连续的输出形状,即要求的输出形状对于第一个是[22],却输出了[20],造成了不一致,查阅相关资料发现在tensorflow1.15早期的版本中,底层的源码文件tensorflow/core/kernels/collective_ops.cc

当col_params_.instance.shape.num_elements() == 0时表明是首次批来的时候,记住了output_shape,当第二批次或后面

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值