SDNE(Structural Deep Network Embedding)理论及pytorch实现

SDNE 使用自动编码器(AutoEncoder)结合拉普拉斯特征映射(Laplacian Eigenmaps),针对网络结构非线性,构建多层非线性函数深度模型,同时针对全局和局部结构以及稀疏性问题,同时优化一阶相似性和二阶相似性来学习网络的局部结构信息和全局结构信息。

一、基础定义

相似度定义

(1)一阶相似度定义:成对节点之间的相似性 或者 节点与其近邻节点的相似性。一般可以用邻接矩阵 S S S中的一行 S = { s i , 1 , s i , 2 , . . . , s i , ∣ V ∣ } S=\{s_{i,1},s_{i,2},...,s_{i,|V|}\} S={ si,1,si,2,...,si,V},表示 v i v_i vi与其他节点之间的相似度。如果 s i , j > 0 s_{i,j}>0 s

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值