- iterrows(): 按行遍历,将DataFrame的每一行迭代为(index, Series)对,可以通过row[name]对元素进行访问。
- itertuples(): 按行遍历,将DataFrame的每一行迭代为元祖,可以通过row[name]对元素进行访问,比iterrows()效率高。
- iteritems():按列遍历,将DataFrame的每一列迭代为(列名, Series)对,可以通过row[index]对元素进行访问。
示例数据
import pandas as pd
inp = [{'c1':10, 'c2':100}, {'c1':11, 'c2':110}, {'c1':12, 'c2':123}]
df = pd.DataFrame(inp)
print(df)
c1 c2
0 10 100
1 11 110
2 12 123
按行遍历iterrows():
import pandas as pd
inp = [{'c1': 10, 'c2': 100}, {'c1': 11, 'c2': 110}, {'c1': 12, 'c2': 123}]
df = pd.DataFrame(inp)
for index, row in df.iterrows():
print(index,row['c1'], row['c2'])
pass
0 10 100
1 11 110
2 12 123
按行遍历itertuples():
import pandas as pd
inp = [{'c1': 10, 'c2': 100}, {'c1': 11, 'c2': 110}, {'c1': 12, 'c2': 123}]
df = pd.DataFrame(inp)
for row in df.itertuples():
print(getattr(row, 'c1'), getattr(row, 'c2'))
按列遍历iteritems():
import pandas as pd
inp = [{'c1': 10, 'c2': 100}, {'c1': 11, 'c2': 110}, {'c1': 12, 'c2': 123}]
df = pd.DataFrame(inp)
for index, row in df.iteritems():
print(index)
print(row[0], row[1], row[2])