变态跳台阶

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

第一种做法,递归的方式。每次跳的可能共有n种。

class Solution {
public:
    int jumpFloorII(int number) {
        int count = 0;
        jump(0, number, &count);
        return count;
    }
    void jump(int sum, int target, int *count) {
        if(sum == target) {
            *count = *count + 1;
        } else if(sum < target){
            for(int i = 1; i <= target; i++) {
                jump(sum + i, target, count);
            }
        }
    }

};

第二种做法:推导公式

f(1)  = 1;

f(2) = f(2-1)+f(2-2);   f(2-1)表示第一次跳一个台阶,省下的n-1个台阶有f(n-1)次,f(2-2)表示第一次跳两个

f(3) = f(3-1) +f(3-2) +f(3-3);

f(n) = f(n-1) + f(n-2) + ....+ f(n-n);

整理后得:f(n) = f(0) + f(1) + .....+f(n-1);

f(0) = 1; f(1) = 1;f(2) = 2; f(3) = 4;.....:f(n) = pow(2,n-1)

public class Solution {
    public int JumpFloorII(int target) {
        return (int)Math.pow(2, target - 1);
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值