环境准备与依赖配置
在项目的pom.xml文件中添加Weka的Maven依赖:
<dependency>
<groupId>nz.ac.waikato.cms.weka</groupId>
<artifactId>weka-stable</artifactId>
<version>3.8.6</version>
</dependency>
确保SpringBoot基础依赖已配置,推荐使用SpringBoot 2.7.x及以上版本。创建application.yml文件配置服务端口等基础参数:
server:
port: 8080
spring:
application:
name: weka-microservice
模型加载与初始化
在resources目录下存放预训练的Weka模型文件(.model格式)。通过静态代码块初始化模型:
public class WekaService {
private static Classifier classifier;
static {
try {
classifier = (Classifier) SerializationHelper.read(
Objects.requireNonNull(
WekaService.class.getClassLoader()
.getResourceAsStream("iris-j48.model")
)
);
} catch (Exception e) {
throw new RuntimeException("Model loading failed", e);
}
}
}
数据预处理模块
创建DTO接收前端传入的预测特征数据:
@Data
public class PredictionRequest {
private double sepalLength;
private double sepalWidth;
private double petalLength;
private double petalWidth;
}
构建ARFF格式数据转换工具类:
public class ArffBuilder {
public static Instances createInstance(PredictionRequest request) {
ArrayList<Attribute> attributes = new ArrayList<>();
attributes.add(new Attribute("sepal_length"));
attributes.add(new Attribute("sepal_width"));
attributes.add(new Attribute("petal_length"));
attributes.add(new Attribute("petal_width"));
Instances dataset = new Instances("prediction_data", attributes, 0);
dataset.setClassIndex(attributes.size() - 1);
double[] values = new double[]{
request.getSepalLength(),
request.getSepalWidth(),
request.getPetalLength(),
request.getPetalWidth()
};
dataset.add(new DenseInstance(1.0, values));
return dataset;
}
}
REST接口实现
创建SpringBoot控制器暴露预测接口:
@RestController
@RequestMapping("/api/predict")
public class PredictionController {
@PostMapping
public String predict(@RequestBody PredictionRequest request) {
try {
Instances instance = ArffBuilder.createInstance(request);
double result = WekaService.classifier.classifyInstance(instance.firstInstance());
return instance.classAttribute().value((int) result);
} catch (Exception e) {
return "Prediction error: " + e.getMessage();
}
}
}
性能优化方案
启用缓存提高重复请求响应速度:
@Cacheable(value = "predictions", key = "#request.toString()")
public String cachedPredict(PredictionRequest request) {
// 原有预测逻辑
}
配置线程池处理并发请求:
@Configuration
@EnableAsync
public class AsyncConfig {
@Bean(name = "wekaThreadPool")
public Executor threadPoolTaskExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.setCorePoolSize(4);
executor.setMaxPoolSize(8);
executor.setQueueCapacity(100);
executor.setThreadNamePrefix("weka-predict-");
executor.initialize();
return executor;
}
}
异常处理机制
全局异常处理器捕获Weka相关异常:
@ControllerAdvice
public class WekaExceptionHandler {
@ExceptionHandler(WekaException.class)
@ResponseStatus(HttpStatus.BAD_REQUEST)
public @ResponseBody String handleWekaException(WekaException ex) {
return "Weka processing error: " + ex.getMessage();
}
}
模型热更新方案
实现模型动态加载接口:
@PostMapping("/model/update")
public String updateModel(@RequestParam MultipartFile file) {
try {
File tempFile = File.createTempFile("model", ".tmp");
file.transferTo(tempFile);
WekaService.reloadModel(tempFile);
return "Model updated successfully";
} catch (Exception e) {
return "Update failed: " + e.getMessage();
}
}
在WekaService中添加模型重载方法:
public static synchronized void reloadModel(File modelFile) {
try {
classifier = (Classifier) SerializationHelper.read(modelFile.getPath());
} catch (Exception e) {
throw new WekaException("Model reloading failed", e);
}
}
微服务监控
集成Prometheus监控指标:
@Bean
public MeterRegistryCustomizer<PrometheusMeterRegistry> metricsCommonTags() {
return registry -> registry.config().commonTags(
"application", "weka-microservice"
);
}
自定义预测指标收集:
@Aspect
@Component
public class PredictionMetricsAspect {
private final Counter predictionCounter = Metrics.counter("weka.predictions.count");
@AfterReturning(pointcut = "execution(* com.example.controller.*.predict(..))", returning = "result")
public void afterPrediction(Object result) {
predictionCounter.increment();
}
}
319

被折叠的 条评论
为什么被折叠?



