- 博客(10)
- 收藏
- 关注
原创 Google colab下载文件夹(打包文件下载)
下载方法,先压缩后下载:import os, tarfile import osfrom google.colab import filesdef make_targz_one_by_one(output_filename, source_dir): tar = tarfile.open(output_filename,"w") for root,dir_name,files_list in os.walk(source_dir): for file in files_list:
2020-12-18 20:09:34
12527
12
原创 GRU新闻分类baseline
import pandas as pdimport numpy as npfrom gensim.models import Word2Vecimport tensorflow as tf1.读取数据 pd.read_csvtrain = pd.read_csv('/content/train.csv',sep='\t',header=None,names=['label','content'])val = pd.read_csv('/content/val.csv',sep='\t',hea
2020-12-17 21:43:18
308
3
原创 几种提升Dataset读取性能的方法
1.prefetch: 数据准备和参数迭代并行执行train_dataset.map( map_func=_decode_and_resize, num_parallel_calls=tf.data.experimental.AUTOTUNE), prefetch(tf.data.experimental.AUTOTUNE), num_epochs=12.interleave:读取数据多进程执行filenames = ["./interleave_data/trai
2020-12-16 11:01:18
1164
原创 Tensorflow自定义训练(不使用compile,fit)
#------省略了准备数据步骤# 优化器optimizer = tf.keras.optimizers.SGD(learning_rate=1e-3)# 损失函数loss_fn = tf.keras.losses.CategoricalCrossentropy(from_logits=True)# 准备metrics函数train_acc_metric = tf.keras.metrics.CategoricalAccuracy()val_acc_metric = tf.keras.met
2020-12-15 13:43:15
1176
3
原创 (Baseline)类定义LSTM识别imdb
#数据导入以及处理batches = 128(x_train,y_train),(x_test,y_test) = keras.datasets.imdb.load_data(num_words=10000)x_train = keras.preprocessing.sequence.pad_sequences(x_train,maxlen=200)x_test = keras.preprocessing.sequence.pad_sequences(x_test,maxlen=200)db_
2020-12-14 21:04:36
191
原创 Tensorflow学习笔记(三)(compile与fit)
使用内置方法进行训练和评估利用minist数据举例:#定义模型inputs = keras.Input(shape=(784,), name="digits")x = layers.Dense(64, activation="relu", name="dense_1")(inputs)x = layers.Dense(64, activation="relu", name="dense_2")(x)outputs = layers.Dense(10, activation="softmax",
2020-12-14 13:15:11
941
2
原创 TensorFlow学习笔记(二)(函数式搭建模型-可解决sequential单入单出问题)
keras API一.具有多个输入和输出的模型:1.文本数据num_words = 10000 # 文本数据Embedding数量num_departments = 4 # Number of departments for predictions#定义三个输入title_input = keras.Input(shape=(None,), name="title") body_input = keras.Input(shape=(None,), name="body")tags_inp
2020-12-14 10:33:01
252
原创 Tensorflow中Sequential model
sequential模型适用于简单堆叠网络层(a plain stack of layers),及每一层只有一个输入和一个输出:几种创建sequential模型的方法:# 1.model = keras.Sequential( [ layers.Dense(2, activation="relu", name="layer1"), layers.Dense(3, activation="relu", name="layer2"), layers
2020-12-14 09:56:49
2422
原创 Tensorflow保存模型,加载模型
Tensorflow保存模型,加载模型#保存模型并删除:model.save_weights('/content/data/cifar10_weights.ckpt')del model#加载模型并评估model = My_Net() #实例化与之前的模型一样,不然参数不匹配model.compile(optimizer=tf.optimizers.Adam(lr=1e-3), loss=tf.losses.CategoricalCrossentropy(from_
2020-12-13 19:56:49
236
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人