Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
Java:
这道题方法还是简单动态规划,只是增加了障碍判断,就是在遇到障碍的时候要设res=0表示走不通了,
直观的解法是用二维数组维护:如果第一行第一列有障碍,在初始化行的时候就跳出。
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid==null||obstacleGrid.length==0||obstacleGrid[0].length==0) return 0;
int m=obstacleGrid.length;
int n=obstacleGrid[0].length;
int[][] res=new int[m][n];
for(int i=0;i<m;i++){
if(obstacleGrid[i][0]==1){
res[i][0]=0;
break;
}
else{
res[i][0]=1;
}
}
for(int j=0;j<n;j++){
if(obstacleGrid[0][j]==1){
res[0][j]=0;
break;
}
else{
res[0][j]=1;
}
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
if(obstacleGrid[i][j]!=1){
res[i][j]=res[i-1][j]+res[i][j-1];
}
else{
res[i][j]=0;
}
}
}
return res[m-1][n-1];
}
}
Reference:
1. http://blog.youkuaiyun.com/linhuanmars/article/details/22135231
空间复杂度一维O(n)
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid == null || obstacleGrid.length==0 || obstacleGrid[0].length==0)
return 0;
int[] res = new int[obstacleGrid[0].length];
res[0] = 1;
for(int i=0;i<obstacleGrid.length;i++)
{
for(int j=0;j<obstacleGrid[0].length;j++)
{
if(obstacleGrid[i][j]==1)
{
res[j]=0;
}
else
{
if(j>0)
res[j] += res[j-1];
}
}
}
return res[obstacleGrid[0].length-1];
}
2. http://www.cnblogs.com/feiling/p/3271548.html
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
// Start typing your Java solution below
// DO NOT write main() function
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] steps = new int[m+2][n+2];
for(int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
steps[i][j] = 0;
}
}
steps[m][n+1] = 1;
for(int i = m; i >= 1; i--){
for(int j = n; j >= 1; j--){
if(obstacleGrid[i - 1][j - 1] == 1){
steps[i][j] = 0;
continue;
}
steps[i][j] = steps[i+1][j] + steps[i][j+1];
}
}
return steps[1][1];
}