本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像等领域提供了新的解决方案。
在工业质检、医疗影像等领域,视觉异常检测(Visual Anomaly Detection, AD)是保障质量与安全的关键技术。然而,异常样本稀缺一直是制约其发展的核心难题 —— 现实中,异常现象往往罕见且难以收集,传统方法要么依赖大量正常数据 “脑补” 异常,要么生成的伪异常缺乏真实感,导致检测模型性能受限。
2022-2025年可复现论文合集!戳
https://docs.qq.com/doc/DQ25HbWt6WmdOZEta?u=7f01826fa3f140bb8e36e875087997e8&nlc=1近日,瑞士洛桑联邦理工学院(EPF

最低0.47元/天 解锁文章
3415

被折叠的 条评论
为什么被折叠?



