import torch import torch.nn as nn import torch.nn.functional as F import math import copy from einops import rearrange class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=device) * -emb) emb = x[:, None] * emb[None, :] emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb # diff class ResidualConv(nn.Module): # diff def __init__(self, in_ch, out_ch): # diff super(ResidualConv, self).__init__() # diff self.conv = nn.Sequential( # diff nn.Conv2d(in_ch, out_ch, 3, padding=1), # diff nn.ReLU(inplace=True), # diff nn.Conv2d(out_ch, out_ch, 3, padding=1), # diff nn.ReLU(inplace=True) # diff ) # diff self.shortcut = nn.Conv2d(in_ch, out_ch, 1) # diff def forward(self, x): # diff return self.conv(x) + self.shortcut(x) # diff class up(nn.Module): def __init__(self, in_ch): super(up, self).__init__() self.up = nn.ConvTranspose2d(in_ch, in_ch // 2, 2, stride=2) def forward(self, x1, x2): x1 = self.up(x1) # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2)) x = x2 + x1 return x class outconv(nn.Module): def __init__(self, in_ch, out_ch): super(outconv, self).__init__() self.conv = nn.Conv2d(in_ch, out_ch, 1) def forward(self, x): x = self.conv(x) return x class adjust_net(nn.Module): def __init__(self, out_channels=64, middle_channels=32): super(adjust_net, self).__init__() self.model = nn.Sequential( nn.Conv2d(2, middle_channels, 3, padding=1), nn.ReLU(inplace=True), nn.AvgPool2d(2), nn.Conv2d(middle_channels, middle_channels * 2, 3, padding=1), nn.ReLU(inplace=True), nn.AvgPool2d(2), nn.Conv2d(middle_channels * 2, middle_channels * 4, 3, padding=1), nn.ReLU(inplace=True), nn.AvgPool2d(2), nn.Conv2d(middle_channels * 4, out_channels * 2, 1, padding=0) ) def forward(self, x): out = self.model(x) out = F.adaptive_avg_pool2d(out, (1, 1)) out1 = out[:, :out.shape[1] // 2] out2 = out[:, out.shape[1] // 2:] return out1, out2 # The architecture of U-Net refers to "Toward Convolutional Blind Denoising of Real Photographs", # official MATLAB implementation: https://github.com/GuoShi28/CBDNet. # unofficial PyTorch implementation: https://github.com/IDKiro/CBDNet-pytorch/tree/master. # We improved it by adding time step embedding and EMM module, while removing the noise estimation network. class UNet(nn.Module): def __init__(self, in_channels=2, out_channels=1): super(UNet, self).__init__() dim = 32 self.time_mlp = nn.Sequential( SinusoidalPosEmb(dim), nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, dim) ) self.inc = nn.Sequential( ResidualConv(in_channels, 64), # diff ResidualConv(64, 64) # diff ) self.down1 = nn.AvgPool2d(2) self.mlp1 = nn.Sequential( nn.GELU(), nn.Linear(dim, 64) ) self.adjust1 = adjust_net(64) self.conv1 = nn.Sequential( ResidualConv(64, 128), # diff ResidualConv(128, 128), # diff ResidualConv(128, 128) # diff ) self.down2 = nn.AvgPool2d(2) self.mlp2 = nn.Sequential( nn.GELU(), nn.Linear(dim, 128) ) self.adjust2 = adjust_net(128) self.conv2 = nn.Sequential( ResidualConv(128, 256), # diff ResidualConv(256, 256), # diff ResidualConv(256, 256), # diff ResidualConv(256, 256), # diff ResidualConv(256, 256), # diff ResidualConv(256, 256) # diff ) self.up1 = up(256) self.mlp3 = nn.Sequential( nn.GELU(), nn.Linear(dim, 128) ) self.adjust3 = adjust_net(128) self.conv3 = nn.Sequential( ResidualConv(128, 128), # diff ResidualConv(128, 128), # diff ResidualConv(128, 128) # diff ) self.up2 = up(128) self.mlp4 = nn.Sequential( nn.GELU(), nn.Linear(dim, 64) ) self.adjust4 = adjust_net(64) self.conv4 = nn.Sequential( ResidualConv(64, 64), # diff ResidualConv(64, 64) # diff ) self.outc = outconv(64, out_channels) def forward(self, x, t, x_adjust, adjust): inx = self.inc(x) time_emb = self.time_mlp(t) down1 = self.down1(inx) condition1 = self.mlp1(time_emb) b, c = condition1.shape condition1 = rearrange(condition1, 'b c -> b c 1 1') if adjust: gamma1, beta1 = self.adjust1(x_adjust) down1 = down1 + gamma1 * condition1 + beta1 else: down1 = down1 + condition1 conv1 = self.conv1(down1) down2 = self.down2(conv1) condition2 = self.mlp2(time_emb) b, c = condition2.shape condition2 = rearrange(condition2, 'b c -> b c 1 1') if adjust: gamma2, beta2 = self.adjust2(x_adjust) down2 = down2 + gamma2 * condition2 + beta2 else: down2 = down2 + condition2 conv2 = self.conv2(down2) up1 = self.up1(conv2, conv1) condition3 = self.mlp3(time_emb) b, c = condition3.shape condition3 = rearrange(condition3, 'b c -> b c 1 1') if adjust: gamma3, beta3 = self.adjust3(x_adjust) up1 = up1 + gamma3 * condition3 + beta3 else: up1 = up1 + condition3 conv3 = self.conv3(up1) up2 = self.up2(conv3, inx) condition4 = self.mlp4(time_emb) b, c = condition4.shape condition4 = rearrange(condition4, 'b c -> b c 1 1') if adjust: gamma4, beta4 = self.adjust4(x_adjust) up2 = up2 + gamma4 * condition4 + beta4 else: up2 = up2 + condition4 conv4 = self.conv4(up2) out = self.outc(conv4) return out class Network(nn.Module): def __init__(self, in_channels=3, out_channels=1, context=True): super(Network, self).__init__() self.unet = UNet(in_channels=in_channels, out_channels=out_channels) self.context = context def forward(self, x, t, y, x_end, adjust=True): if self.context: x_middle = x[:, 1].unsqueeze(1) else: x_middle = x x_adjust = torch.cat((y, x_end), dim=1) out = self.unet(x, t, x_adjust, adjust=adjust) + x_middle return out # WeightNet of the one-shot learning framework class WeightNet(nn.Module): def __init__(self, weight_num=10): super(WeightNet, self).__init__() init = torch.ones([1, weight_num, 1, 1]) / weight_num self.weights = nn.Parameter(init) def forward(self, x): weights = F.softmax(self.weights, 1) out = weights * x out = out.sum(dim=1, keepdim=True) return out, weights
rescorediff
最新推荐文章于 2025-07-27 22:22:01 发布