题目链接:https://www.lanqiao.cn/courses/2786/learning/?id=67813
答案:DDDDRRURRRRRRDRRRRDDDLDDRDDDDDDDDDDDDRDDRRRURRUURRDDDDRDRRRRRRDRRURRDDDRRRRUURUUUUUUULULLUUUURRRRUULLLUUUULLUUULUURRURRURURRRDDRRRRRDDRRDDLLLDDRRDDRDDLDDDLLDDLLLDLDDDLDDRRRRRRRRRDDDDDDRR
解析:典型的BFS+DFS题,先用BFS向四周扩散,直到终点,找到最短路,再用DFS打印路径即可
代码:
//#define local
#include<cstdio>
#include<iostream>
#include<queue>
#define MAXX 30
#define MAXY 50
using namespace std;
typedef long long ll;
int e[MAXX][MAXY];//存储图
int vis[MAXX][MAXY]={0};//记录是否结点是否访问
//4个方向
int dirx[4]={1,0,0,-1};
int diry[4]={0,-1,1,0};
char dir[5]="DLRU";
//记录某一结点的父节点的x,y坐标以及父节点从哪个方向到达子节点
struct father{
int x,y;
char s;
father(int x=-1,int y=-1,int i=0):x(x),y(y),s(dir[i]){
}
};
father a[MAXX][MAXY];
//结点
struct node{
int x,y;
node(int x=0,int y=0):x(x),y(y){
}
};
//越界检查函数
bool cheak(int &x,int &y){
return x>=0&&x<MAXX&&y>=0&&y<MAXY&&e[x][y]!=1&&vis[x][y]==0;
}
//bfs找最短路
void bfs(){
queue<node>q;
node start;
q.push(start);
while(!q.empty()){
node f=q.front();
q.pop();
for(int i=0;i<4;i++){
int xx=f.x+dirx[i];
int yy=f.y+diry[i];
if(cheak(xx,yy)){
vis[xx][yy]=1;
node next=node(xx,yy);
q.push(next);
a[xx][yy]=father(f.x,f.y,i);
}
}
}
}
//dfs打印路径
void dfs(node cur){
if(cur.x==0&&cur.y==0)
return;
node last=node(a[cur.x][cur.y].x,a[cur.x][cur.y].y);
dfs(last);
printf("%c",a[cur.x][cur.y].s);
}
int main(){
#ifdef local
//建议从文件中读取;后文有data.in的内容
freopen("data.in","rb",stdin);
freopen("data.out","wb",stdout);
#endif
for(int i=0;i<MAXX;i++){
for(int j=0;j<MAXY;j++){
scanf("%1d",&e[i][j]);
}
}
node final=node(MAXX-1,MAXY-1);
bfs();
dfs(final);
return 0;
}
备注:
题目示例的迷宫:(写好程序可以先用这个来验证)
010000
000100
001001
110000
题目要求的迷宫:(data.in的内容)
01010101001011001001010110010110100100001000101010
00001000100000101010010000100000001001100110100101
01111011010010001000001101001011100011000000010000
01000000001010100011010000101000001010101011001011
00011111000000101000010010100010100000101100000000
11001000110101000010101100011010011010101011110111
00011011010101001001001010000001000101001110000000
10100000101000100110101010111110011000010000111010
00111000001010100001100010000001000101001100001001
11000110100001110010001001010101010101010001101000
00010000100100000101001010101110100010101010000101
11100100101001001000010000010101010100100100010100
00000010000000101011001111010001100000101010100011
10101010011100001000011000010110011110110100001000
10101010100001101010100101000010100000111011101001
10000000101100010000101100101101001011100000000100
10101001000000010100100001000100000100011110101001
00101001010101101001010100011010101101110000110101
11001010000100001100000010100101000001000111000010
00001000110000110101101000000100101001001000011101
10100101000101000000001110110010110101101010100001
00101000010000110101010000100010001001000100010101
10100001000110010001000010101001010101011111010010
00000100101000000110010100101001000001000000000010
11010000001001110111001001000011101001011011101000
00000110100010001000100000001000011101000000110011
10101000101000100010001111100010101001010000001000
10000010100101001010110000000100101010001011101000
00111100001000010000000110111000000001000000001011
10000001100111010111010001000110111010101101111000