蚁群算法理解与实现

蚁群算法,也是优化算法当中的一种。蚁群算法擅长解决组合优化问题。蚁群算法能够有效的解决著名的旅行商问题(TSP),不止如此,在其他的一些领域也取得了一定的成效,例如工序排序问题,图着色问题,网络路由问题等等。接下来便为大家简单介绍蚁群算法的基本思想。

蚁群算法,顾名思义就是根据蚁群觅食行为而得来的一种算法。单只蚂蚁的觅食行为貌似是杂乱无章的,但是据昆虫学家观察,蚁群在觅食时总能够找到离食物最近的路线,这其中的原因是什么呢?其实,蚂蚁的视力并不是很好,但是他们又是凭借什么区寻找到距离食物的最短路径的呢?经过研究发现,每一只蚂蚁在觅食的过程中,会在沿途释放出一种叫做信息素的物质。其他蚂蚁会察觉到这种物质,因此,这种物质会影响到其他蚂蚁的觅食行为。当一些路径上经过的蚂蚁越多时,这条路径上的信息素浓度也就越高,其他蚂蚁选择这条路径的可能性也就越大,从而更增加了这条路径上的信息素浓度。当然,一条路径上的信息素浓度也会随着时间的流逝而降低。这种选择过程被称之为蚂蚁的自催化行为,是一种正反馈机制,也可以将整个蚁群认定为一个增强型学习系统。

为了让大家更好的理解上文中提到的蚁群觅食行为,这里通过一张图片来说明蚁群觅食行为。

如图所示,A点为一个蚁穴,设定其中有两只蚂蚁,蚂蚁1和蚂蚁2。B点为食物所在位置,C点只是路径上的一点。假设ABC形成一个等边三角形,且两只蚂蚁的移动速度均相同。

在t0时刻,两只蚂蚁在蚁穴中,在他们面前有两条路可以选择,即AB或AC。两只蚂蚁随机进行选择,我们假设蚂蚁1选择了路径AC,而蚂蚁2选择了路径AB。

在t1时刻是,蚂蚁1走到了C点,而蚂蚁2走到了B点,即食物所在位置。他们在其经过的路径上释放了信息素,在途中用虚线表示。之后蚂蚁2将食物运往蚁穴,此时它有两种选择,走BC或走CA,但是BC上信息素浓度为0,因此选择CA进行原路返回,返回时依然在沿途释放信息素,蚂蚁1则从C点向B点进发。

等到t2时刻时,蚂蚁2到达了蚁穴A点,蚂蚁1到达了食物所在位置B点,此时蚂蚁2再次出发去搬运食物,它发现AB路径上的信息素浓度要高于AC路径上的信息素浓度(AB路径上有两条虚线,AC路径上只有1条虚线)。因此蚂蚁2选择AB路径去搬运食物,而蚂蚁1则在B点获取到了食物,接下来返回蚁穴,但是它也有两种选择,一种是原路返回,另一种便是走线路AB。蚂蚁1发现AB路径上的信息素浓度要高于BC路径上的信息素浓度,因此它将选择AB来返回蚁穴。

如此往复,AC、BC路径的信息素浓度会越来越低,AB路径上的信息素浓度会越来越高,所以AC路径上将没有蚂蚁再次经过,两只蚂蚁都只会选择路径较短的AB线路去搬运食物。

以上便是蚁群算法的基本原理。

接下来介绍蚁群算法的数学模型,我们以TSP问题为例来进行说明。

TSP(Traveling Salesman Problem)问题,中文叫做旅行商问题:什么是TSP问题,也许有些人还不太清楚。这里做个简要的介绍。TSP问题及著名的旅行商问题,记得第一次接触这个问题是在本科时学习运筹学课程时碰到的一个问题,因此,这个问题是运筹学领域或也可以说是数学领域中的一个著名的问题。这个问题简单描述就是:假设一个旅行商人,他要遍历n个城市,但是每个城市只能遍历一次,最终还要回到最初所在的城市,要求制定一个遍历方案,使经过的总路程最短。

接下来便用蚁群算法对这个问题进行求解:

首先列出一些蚁群算法中涉及到的参数及其符号:

:蚂蚁数量,约为城市数量的1.5倍。如果蚂蚁数量过大,则每条路径上的信息素浓度趋于平均,正反馈作用减弱,从而导致收敛速度减慢;如果过小,则可能导致一些从未搜索过的路径信息素浓度减小为0,导致过早收敛,解的全局最优性降低

:信息素因子,反映了蚂蚁运动过程中积累的信息量在指导蚁群搜索中的相对重要程度,取值范围通常在[1, 4]之间。如果信息素因子值设置过大,则容易使随机搜索性减弱;其值过小容易过早陷入局部最优

:启发函数因子,反映了启发式信息在指导蚁群搜索中的相对重要程度,取值范围在[3, 4.5]之间。如果值设置过大,虽然收敛速度加快,但是易陷入局部最优;其值过小,蚁群易陷入纯粹的随机搜索,很难找到最优解

:信息素挥发因子,反映了信息素的消失水平&#x

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值