描述
The nth Triangular number, T(n) = 1 + … + n, is the sum of the first n integers. It is the number of points in a triangular array with n points on side. For example T(4):
X
X X
X X X
X X X X
X X
X X X
X X X X
Write a program to compute the weighted sum of triangular numbers:
W(n) = SUM[k = 1…n; k * T(k + 1)]
- 输入
- The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the number of datasets that follow.
Each dataset consists of a single line of input containing a single integer n, (1 ≤ n ≤300), which is the number of points on a side of the triangle. 输出 - For each dataset, output on a single line the dataset number (1 through N), a blank, the value of n for the dataset, a blank, and the weighted sum ,W(n), of triangular numbers for n. 样例输入
-
4 3 4 5 10
样例输出 -
1 3 45 2 4 105 3 5 210 4 10 2145
#include<stdio.h>
int a[310];
void fun()
{
int sum=0,gg=0;
a[0]=0;
for(int i=1; i<=300; i++)
{
sum+=i;
gg=i*(sum + i+1);
a[i]=a[i-1]+gg;
}
}
int main()
{
fun();
int t;
scanf("%d",&t);
int k=0;
while(t--)
{
int n;
scanf("%d",&n);
printf("%d %d %d\n",++k,n,a[n]);
}
return 0;
}