C语言 深入理解指针 (一)

目录

前言

内存和地址

如何理解编址 

指针变量和地址

取地址操作符(&)

指针变量和解引⽤操作符(*)

指针变量的大小

指针变量类型的意义

指针+-整数

void* 指针

const修饰指针

const修饰指针变量

指针运算

指针+- 整数

 指针-指针

指针的关系运算

野指针


前言

前面我们已经说了很多关于C语言的基础语法知识点, 这一部分呢~? 我想用5章的内容带大家深入理解C语言中最有含金量的知识点 ---- 指针, C语言中很多的高级操作都是依赖指针, 像回调函数等等.

内存和地址

在讲内存和地址之前,我们想有个⽣活中的案例:

假设有⼀栋宿舍楼,把你放在楼⾥,楼上有100个房间,但是房间没有编号,你的⼀个朋友来找你玩,如果想找到你,就得挨个房⼦去找,这样效率很低,但是我们如果根据楼层和楼层的房间的情况,给每个房间编上号,如:

⼀楼:101102103...

⼆楼:201202203....

...

有了房间号,如果你的朋友得到房间号,就可以快速的找房间,找到你。 

⽣活中,每个房间有了房间号,就能提⾼效率,能快速的找到房间。

如果把上⾯的例⼦对照到计算中,⼜是怎么样呢?

我们知道计算上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数据也会放回内存中,那我们买电脑的时候,电脑上内存是8GB/16GB/32GB等,那这些内存空间如何⾼效的管理呢?其实也是把内存划分为⼀个个的内存单元,每个内存单元的⼤⼩取1个字节。

计算机中常⻅的单位(补充):⼀个⽐特位可以存储⼀个2进制的位1或者0

bit - ⽐特位

byte - 字节

KB

MB

GB

TB

PB

1byte = 8bit

1KB = 1024byte

1MB = 1024KB

1GB = 1024MB

1TB = 1024GB

1PB = 1024TB

其中,每个内存单元,相当于⼀个学⽣宿舍,⼀个⼈字节空间⾥⾯能放8个⽐特位,就好⽐同学们 住的⼋⼈间,每个⼈是⼀个⽐特位。每个内存单元也都有⼀个编号(这个编号就相当于宿舍房间的⻔牌号),有了这个内存单元的编号,CPU就可以快速找到⼀个内存空间。

⽣活中我们把⻔牌号也叫地址,在计算机中我们把内存单元的编号也称为地址。C语⾔中给地址起 了新的名字叫:指针。所以我们可以理解为: 内存单元的编号 == 地址 == 指针

如何理解编址 

CPU访问内存中的某个字节空间,必须知道这个字节空间在内存的什么位置,⽽因为内存中字节 很多,所以需要给内存进⾏编址(就如同宿舍很多,需要给宿舍编号⼀样)。计算机中的编址,并不是把每个字节的地址记录下来,⽽是通过硬件设计完成的。钢琴、吉他 上⾯没有写上“都瑞咪发嗦啦”这样的信息,但演奏者照样能够准确找到每⼀个琴弦的每⼀个位置,这是为何?因为制造商已经在乐器硬件层⾯上设计好了,并且所有的演奏者都知道。本质是⼀种约定出来的共识!

硬件编址也是如此

⾸先,必须理解,计算机内是有很多的硬件单元,⽽硬件单元是要互相协同⼯作的。所谓的协 同,⾄少相互之间要能够进⾏数据传递。 但是硬件与硬件之间是互相独⽴的,那么如何通 信呢?答案很简单,⽤"线"连起来。 ⽽CPU和内存之间也是有⼤量的数据交互的,所以,两者必须也⽤线连起来。不过,我们今天关⼼⼀组线,叫做地址总线。

我们可以简单理解,32位机器有32根地址总线,每根线只有两态,表⽰0,1【电脉冲有⽆】,那么 ⼀根线,就能表⽰2种含义,2根线就能表⽰4种含义,依次类推。32根地址线,就能表⽰2^32种含 义,每⼀种含义都代表⼀个地址。地址信息被下达给内存,在内存上,就可以找到该地址对应的数据,将数据在通过数据总线传⼊CPU内寄存器。

指针变量和地址

取地址操作符(&)

#include <stdio.h>
int main()
{
 int a = 10;
 return 0;
}

⽐如,上述的代码就是创建了整型变量a,内存中申请4个字节,⽤于存放整数10,其中每个字节都有地址,上图中4个字节的地址分别是:

0x006FFD70
0x006FFD71
0x006FFD72
0x006FFD73

那我们如何能得到a的地址呢?这⾥就得学习⼀个操作符(&)-取地址操作符

#include <stdio.h>
int main()
{
 int a = 10;
 &a;//取出a的地址
 printf("%p\n", &a);
 return 0;
}

按照我画图的例⼦,会打印处理:006FFD70(取出的是4个字节中较低的地址) &a取出的是a所占4个字节中地址较⼩的字节的地 址。

虽然整型变量占⽤4个字节,我们只要知道了第⼀个字节地址,顺藤摸⽠访问到4个字节的数据也是可⾏的。

指针变量和解引⽤操作符(*)

那我们通过取地址操作符(&)拿到的地址是⼀个数值,⽐如:0x006FFD70,这个数值有时候也是需要存储起来,⽅便后期再使⽤的,那我们把这样的地址值存放在哪⾥呢?答案是:指针变量中。

#include <stdio.h>
int main()
{
 int a = 10;
 int* pa = &a;//取出a的地址并存储到指针变量pa中
 
 return 0;
}

指针变量也是⼀种变量,这种变量就是⽤来存放地址的,存放在指针变量中的值都会理解为地址。

我们看到pa的类型是 int* ,我们该如何理解指针的类型呢?

int a = 10;
int * pa = &a;

这⾥pa左边写的是 int* * 是在说明pa是指针变量,⽽前⾯的 int 是在说明pa指向的是整型(int) 类型的对象。

那如果有⼀个char类型的变量ch,ch的地址,要放在什么类型的指针变量中呢?

char ch = 'w';
pc = &ch;//pc 的类型怎么写呢?

我们将地址保存起来,未来是要使⽤的,那怎么使⽤呢? 在现实⽣活中,我们使⽤地址要找到⼀个房间,在房间⾥可以拿去或者存放物品。

C语⾔中其实也是⼀样的,我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针) 指向的对象,这⾥必须学习⼀个操作符叫解引⽤操作符(*)。

#include <stdio.h>
int main()
{
 int a = 100;
 int* pa = &a;
 *pa = 0;
 return 0;
}

上⾯代码中第7⾏就使⽤了解引⽤操作符, *pa 的意思就是通过pa中存放的地址,找到指向的空间,*pa其实就是a变量了;所以*pa = 0,这个操作符是把a改成了0. 有同学肯定在想,这⾥如果⽬的就是把a改成0的话,写成 a = 0; 不就完了,为啥⾮要使⽤指针呢? 其实这⾥是把a的修改交给了pa来操作,这样对a的修改,就多了⼀种的途径,写代码就会更加灵活, 后期慢慢就能理解了。

指针变量的大小

前⾯的内容我们了解到,32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产⽣的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4 个字节才能存储。

如果指针变量是⽤来存放地址的,那么指针变的⼤⼩就得是4个字节的空间才可以。

同理64位机器,假设有64根地址线,⼀个地址就是64个⼆进制位组成的⼆进制序列,存储起来就需要8个字节的空间,指针变的⼤⼩就是8个字节。

#include <stdio.h>
//指针变量的⼤⼩取决于地址的⼤⼩
//32位平台下地址是32个bit位(即4个字节)
//64位平台下地址是64个bit位(即8个字节)
int main()
{
 printf("%zd\n", sizeof(char *));
 printf("%zd\n", sizeof(short *));
 printf("%zd\n", sizeof(int *));
 printf("%zd\n", sizeof(double *));
 return 0;
}

指针变量类型的意义

指针变量的⼤⼩和类型⽆关,只要是指针变量,在同⼀个平台下,⼤⼩都是⼀样的,为什么还要有各种各样的指针类型呢? 其实指针类型是有特殊意义的,我们接下来继续学习.

//代码1
#include <stdio.h>
int main()
{
 int n = 0x11223344;
 int *pi = &n; 
 *pi = 0; 
 return 0;
}
//代码2
#include <stdio.h>
int main()
{
 int n = 0x11223344;
 char *pc = (char *)&n;
 *pc = 0;
 return 0;
}

调试我们可以看到,代码1会将n的4个字节全部改为0,但是代码2只是将n的第⼀个字节改为0。

结论:指针的类型决定了,对指针解引⽤的时候有多⼤的权限(⼀次能操作⼏个字节)。

⽐如: char* 的指针解引⽤就只能访问⼀个字节,⽽ int* 的指针的解引⽤就能访问四个字节。

指针+-整数

#include <stdio.h>
int main()
{
 int n = 10;
 char *pc = (char*)&n;
 int *pi = &n;
 
 printf("%p\n", &n);
 printf("%p\n", pc);
 printf("%p\n", pc+1);
 printf("%p\n", pi);
 printf("%p\n", pi+1);
 return 0;
}

我们可以看出, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。 这就是指针变量的类型差异带来的变化。

结论:指针的类型决定了指针向前或者向后⾛⼀步有多⼤(距离)。

void* 指针

在指针类型中有⼀种特殊的类型是 void* 类型的,可以理解为⽆具体类型的指针(或者叫泛型指 针),这种类型的指针可以⽤来接受任意类型地址。但是也有局限性, void* 类型的指针不能直接进 ⾏指针的+-整数和解引⽤的运算。

#include <stdio.h>
int main()
{
 int a = 10;
 int* pa = &a;
 char* pc = &a;
 return 0;
}

在上⾯的代码中,将⼀个int类型的变量的地址赋值给⼀个char*类型的指针变量。编译器给出了⼀个警告(如下图),是因为类型不兼容。⽽使⽤void*类型就不会有这样的问题。

使⽤void*类型的指针接收地址:

#include <stdio.h>
int main()
{
 int a = 10;
 void* pa = &a;
 void* pc = &a;
 
 *pa = 10;
 *pc = 0;
 return 0;
}

这⾥我们可以看到, void* 类型的指针可以接收不同类型的地址,但是⽆法直接进⾏指针运算。 那么 void* 类型的指针到底有什么⽤呢? ⼀般 void* 类型的指针是使⽤在函数参数的部分,⽤来接收不同类型数据的地址,这样的设计可以实现泛型编程的效果。

const修饰指针

变量是可以修改的,如果把变量的地址交给⼀个指针变量,通过指针变量的也可以修改这个变量。 但是如果我们希望⼀个变量加上⼀些限制,不能被修改,怎么做呢?这就是const的作⽤。

#include <stdio.h>
int main()
{
 int m = 0;
 m = 20;//m是可以修改的
 const int n = 0;
 n = 20;//n是不能被修改的
 return 0;
}

上述代码中n是不能被修改的,其实n本质是变量,只不过被const修饰后,在语法上加了限制,只要我们在代码中对n就⾏修改,就不符合语法规则,就报错,致使没法直接修改n。

但是如果我们绕过n,使⽤n的地址,去修改n就能做到了,虽然这样做是在打破语法规则

#include <stdio.h>
int main()
{
 const int n = 0;
 printf("n = %d\n", n);
 int*p = &n;
 *p = 20;
 printf("n = %d\n", n);
}

我们可以看到这⾥⼀个确实修改了,但是我们还是要思考⼀下,为什么n要被const修饰呢?就是为了不能被修改,如果p拿到n的地址就能修改n,这样就打破了const的限制,这是不合理的,所以应该让 p拿到n的地址也不能修改n,那接下来怎么做呢?

const修饰指针变量

#include <stdio.h>
//代码1
void test1()
{
 int n = 10;
 int m = 20;
 int *p = &n;
 *p = 20;//ok?
 p = &m; //ok?
}
void test2()
{
 //代码2
 int n = 10;
 int m = 20;
 const int* p = &n;
 *p = 20;//ok?
 p = &m; //ok?
}
void test3()
{
 int n = 10;
 int m = 20;
 int *const p = &n;
 *p = 20; //ok?
 p = &m; //ok?
}
void test4()
{
 int n = 10;
 int m = 20;
 int const * const p = &n;
 *p = 20; //ok?
 p = &m; //ok?
}
int main()
{
 //测试⽆const修饰的情况
 test1();
 //测试const放在*的左边情况
 test2();
 //测试const放在*的右边情况
 test3();
 //测试*的左右两边都有const
 test4();
 return 0;
}

结论:const修饰指针变量的时候

const如果放在*的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。但是指针变量本⾝的内容可变。

const如果放在*的右边,修饰的是指针变量本⾝,保证了指针变量的内容不能修改,但是指针指向的内容,可以通过指针改变。

指针运算

指针的基本运算有三种,分别是:

指针+- 整数

指针-指针

指针的关系运算

指针+- 整数

因为数组在内存中是连续存放的,只要知道第⼀个元素的地址,顺藤摸⽠就能找到后⾯的所有元素。

int arr[10] = {1,2,3,4,5,6,7,8,9,10};

#include <stdio.h>
//指针+- 整数
int main()
{
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 int *p = &arr[0];
 int i = 0;
 int sz = sizeof(arr)/sizeof(arr[0]);
 for(i=0; i<sz; i++)
 {
 printf("%d ", *(p+i));//p+i 这⾥就是指针+整数
 }
 return 0;
}

 指针-指针

//指针-指针
#include <stdio.h>
int my_strlen(char *s)
{
 char *p = s;
 while(*p != '\0' )
 p++;
 return p-s;
}
int main()
{
 printf("%d\n", my_strlen("abc"));
 return 0;
}

指针的关系运算

//指针的关系运算
#include <stdio.h>
int main()
{
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 int *p = &arr[0];
 int i = 0;
 int sz = sizeof(arr)/sizeof(arr[0]);
 while(p<arr+sz) //指针的⼤⼩⽐较
 {
 printf("%d ", *p);
 p++;
 }
 return 0;
}

野指针

概念: 野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)

成因: 指针未初始化, 指针越界访问, 指针指向的空间释放

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值