批量归一化和残差网络
处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。
标准化处理输入数据使各个特征的分布相近
利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。
位置:全连接层中的仿射变换和激活函数之间。
全连接:
x
=
W
u
+
b
o
u
t
p
u
t
=
ϕ
(
x
)
\boldsymbol{x} = \boldsymbol{W\boldsymbol{u} + \boldsymbol{b}} \\ output =\phi(\boldsymbol{x})
x=Wu+boutput=ϕ(x)
批量归一化:
o
u
t
p
u
t
=
ϕ
(
BN
(
x
)
)
output=\phi(\text{BN}(\boldsymbol{x}))
output=ϕ(BN(x))
y ( i ) = BN ( x ( i ) ) \boldsymbol{y}^{(i)} = \text{BN}(\boldsymbol{x}^{(i)}) y(i)=BN(x(i))
μ
B
←
1
m
∑
i
=
1
m
x
(
i
)
,
\boldsymbol{\mu}_\mathcal{B} \leftarrow \frac{1}{m}\sum_{i = 1}^{m} \boldsymbol{x}^{(i)},
μB←m1i=1∑mx(i),
σ
B
2
←
1
m
∑
i
=
1
m
(
x
(
i
)
−
μ
B
)
2
,
\boldsymbol{\sigma}_\mathcal{B}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m}(\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_\mathcal{B})^2,
σB2←m1i=1∑m(x(i)−μB)2,
x ^ ( i ) ← x ( i ) − μ B σ B 2 + ϵ , \hat{\boldsymbol{x}}^{(i)} \leftarrow \frac{\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_\mathcal{B}}{\sqrt{\boldsymbol{\sigma}_\mathcal{B}^2 + \epsilon}}, x^(i)←σB2+ϵx(i)−μB,
这⾥ϵ > 0是个很小的常数,保证分母大于0
y ( i ) ← γ ⊙ x ^ ( i ) + β . {\boldsymbol{y}}^{(i)} \leftarrow \boldsymbol{\gamma} \odot \hat{\boldsymbol{x}}^{(i)} + \boldsymbol{\beta}. y(i)←γ⊙x^(i)+β.
引入可学习参数:拉伸参数γ和偏移参数β。若 γ = σ B 2 + ϵ \boldsymbol{\gamma} = \sqrt{\boldsymbol{\sigma}_\mathcal{B}^2 + \epsilon} γ=σB2+ϵ和 β = μ B \boldsymbol{\beta} = \boldsymbol{\mu}_\mathcal{B} β=μB,批量归一化无效。
位置:卷积计算之后、应⽤激活函数之前。
如果卷积计算输出多个通道,我们需要对这些通道的输出分别做批量归一化,且每个通道都拥有独立的拉伸和偏移参数。
计算:对单通道,batchsize=m,卷积计算输出=pxq
对该通道中m×p×q个元素同时做批量归一化,使用相同的均值和方差。
训练:以batch为单位,对每个batch计算均值和方差。
预测:用移动平均估算整个训练数据集的样本均值和方差。
深度学习的问题:深度CNN网络达到一定深度后再一味地增加层数并不能带来进一步地分类性能提高,反而会招致网络收敛变得更慢,准确率也变得更差。
恒等映射:
左边:f(x)=x
右边:f(x)-x=0 (易于捕捉恒等映射的细微波动)
在残差块中,输⼊可通过跨层的数据线路更快 地向前传播。
卷积(64,7x7,3)
批量一体化
最大池化(3x3,2)
残差块x4 (通过步幅为2的残差块在每个模块之间减小高和宽)
全局平均池化
全连接
稠密块(dense block): 定义了输入和输出是如何连结的。
过渡层(transition layer):用来控制通道数,使之不过大。
凸优化
尽管优化方法可以最小化深度学习中的损失函数值,但本质上优化方法达到的目标与深度学习的目标并不相同。
- 局部最小值
- 鞍点
- 梯度消失
∑ i α i f ( x i ) ≥ f ( ∑ i α i x i ) and E x [ f ( x ) ] ≥ f ( E x [ x ] ) \sum_{i} \alpha_{i} f\left(x_{i}\right) \geq f\left(\sum_{i} \alpha_{i} x_{i}\right) \text { and } E_{x}[f(x)] \geq f\left(E_{x}[x]\right) i∑αif(xi)≥f(i∑αixi) and Ex[f(x)]≥f(Ex[x])
- 无局部极小值
证明:假设存在 x ∈ X x \in X x∈X 是局部最小值,则存在全局最小值 x ′ ∈ X x' \in X x′∈X, 使得 f ( x ) > f ( x ′ ) f(x) > f(x') f(x)>f(x′), 则对 λ ∈ ( 0 , 1 ] \lambda \in(0,1] λ∈(0,1]:
f ( x ) > λ f ( x ) + ( 1 − λ ) f ( x ′ ) ≥ f ( λ x + ( 1 − λ ) x ′ ) f(x)>\lambda f(x)+(1-\lambda) f(x^{\prime}) \geq f(\lambda x+(1-\lambda) x^{\prime}) f(x)>λf(x)+(1−λ)f(x′)≥f(λx+(1−λ)x′)
-
与凸集的关系
对于凸函数 f ( x ) f(x) f(x),定义集合 S b : = { x ∣ x ∈ X and f ( x ) ≤ b } S_{b}:=\{x | x \in X \text { and } f(x) \leq b\} Sb:={x∣x∈X and f(x)≤b},则集合 S b S_b Sb 为凸集。
证明:对于点 x , x ′ ∈ S b x,x' \in S_b x,x′∈Sb, 有 f ( λ x + ( 1 − λ ) x ′ ) ≤ λ f ( x ) + ( 1 − λ ) f ( x ′ ) ≤ b f\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right) \leq b f(λx+(1−λ)x′)≤λf(x)+(1−λ)f(x′)≤b, 故 λ x + ( 1 − λ ) x ′ ∈ S b \lambda x+(1-\lambda) x^{\prime} \in S_{b} λx+(1−λ)x′∈Sb -
二阶条件
f ′ ′ ( x ) ≥ 0 ⟺ f ( x ) f^{''}(x) \ge 0 \Longleftrightarrow f(x) f′′(x)≥0⟺f(x) 是凸函数
必要性 ( ⇐ \Leftarrow ⇐):
对于凸函数:
1 2 f ( x + ϵ ) + 1 2 f ( x − ϵ ) ≥ f ( x + ϵ 2 + x − ϵ 2 ) = f ( x ) \frac{1}{2} f(x+\epsilon)+\frac{1}{2} f(x-\epsilon) \geq f\left(\frac{x+\epsilon}{2}+\frac{x-\epsilon}{2}\right)=f(x) 21f(x+ϵ)+21f(x−ϵ)≥f(2x+ϵ+2x−ϵ)=f(x)
故:
f ′ ′ ( x ) = lim ε → 0 f ( x + ϵ ) − f ( x ) ϵ − f ( x ) − f ( x − ϵ ) ϵ ϵ f^{\prime \prime}(x)=\lim _{\varepsilon \rightarrow 0} \frac{\frac{f(x+\epsilon) - f(x)}{\epsilon}-\frac{f(x) - f(x-\epsilon)}{\epsilon}}{\epsilon} f′′(x)=ε→0limϵϵf(x+ϵ)−f(x)−ϵf(x)−f(x−ϵ)
f ′ ′ ( x ) = lim ε → 0 f ( x + ϵ ) + f ( x − ϵ ) − 2 f ( x ) ϵ 2 ≥ 0 f^{\prime \prime}(x)=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\epsilon)+f(x-\epsilon)-2 f(x)}{\epsilon^{2}} \geq 0 f′′(x)=ε→0limϵ2f(x+ϵ)+f(x−ϵ)−2f(x)≥0
充分性 ( ⇒ \Rightarrow ⇒):
令 a < x < b a < x < b a<x<b 为 f ( x ) f(x) f(x) 上的三个点,由拉格朗日中值定理:
f ( x ) − f ( a ) = ( x − a ) f ′ ( α ) for some α ∈ [ a , x ] and f ( b ) − f ( x ) = ( b − x ) f ′ ( β ) for some β ∈ [ x , b ] \begin{array}{l}{f(x)-f(a)=(x-a) f^{\prime}(\alpha) \text { for some } \alpha \in[a, x] \text { and }} \\ {f(b)-f(x)=(b-x) f^{\prime}(\beta) \text { for some } \beta \in[x, b]}\end{array} f(x)−f(a)=(x−a)f′(α) for some α∈[a,x] and f(b)−f(x)=(b−x)f′(β) for some β∈[x,b]
根据单调性,有 f ′ ( β ) ≥ f ′ ( α ) f^{\prime}(\beta) \geq f^{\prime}(\alpha) f′(β)≥f′(α), 故:
f ( b ) − f ( a ) = f ( b ) − f ( x ) + f ( x ) − f ( a ) = ( b − x ) f ′ ( β ) + ( x − a ) f ′ ( α ) ≥ ( b − a ) f ′ ( α ) \begin{aligned} f(b)-f(a) &=f(b)-f(x)+f(x)-f(a) \\ &=(b-x) f^{\prime}(\beta)+(x-a) f^{\prime}(\alpha) \\ & \geq(b-a) f^{\prime}(\alpha) \end{aligned} f(b)−f(a)=f(b)−f(x)+f(x)−f(a)=(b−x)f′(β)+(x−a)f′(α)≥(b−a)f′(α)
限制条件:
minimize
x
f
(
x
)
subject to
c
i
(
x
)
≤
0
for all
i
∈
{
1
,
…
,
N
}
\begin{array}{l}{\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x})} \\ {\text { subject to } c_{i}(\mathbf{x}) \leq 0 \text { for all } i \in\{1, \ldots, N\}}\end{array}
xminimizef(x) subject to ci(x)≤0 for all i∈{1,…,N}
L ( x , α ) = f ( x ) + ∑ i α i c i ( x ) where α i ≥ 0 L(\mathbf{x}, \alpha)=f(\mathbf{x})+\sum_{i} \alpha_{i} c_{i}(\mathbf{x}) \text { where } \alpha_{i} \geq 0 L(x,α)=f(x)+i∑αici(x) where αi≥0
欲使 c i ( x ) ≤ 0 c_i(x) \leq 0 ci(x)≤0, 将项 α i c i ( x ) \alpha_ic_i(x) αici(x) 加入目标函数,如多层感知机章节中的 λ 2 ∣ ∣ w ∣ ∣ 2 \frac{\lambda}{2} ||w||^2 2λ∣∣w∣∣2
Proj X ( x ) = argmin x ′ ∈ X ∥ x − x ′ ∥ 2 \operatorname{Proj}_{X}(\mathbf{x})=\underset{\mathbf{x}^{\prime} \in X}{\operatorname{argmin}}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2} ProjX(x)=x′∈Xargmin∥x−x′∥2
梯度下降(Boyd & Vandenberghe, 2004)
证明:沿梯度反方向移动自变量可以减小函数值
泰勒展开:
f ( x + ϵ ) = f ( x ) + ϵ f ′ ( x ) + O ( ϵ 2 ) f(x+\epsilon)=f(x)+\epsilon f^{\prime}(x)+\mathcal{O}\left(\epsilon^{2}\right) f(x+ϵ)=f(x)+ϵf′(x)+O(ϵ2)
代入沿梯度方向的移动量 η f ′ ( x ) \eta f^{\prime}(x) ηf′(x):
f ( x − η f ′ ( x ) ) = f ( x ) − η f ′ 2 ( x ) + O ( η 2 f ′ 2 ( x ) ) f\left(x-\eta f^{\prime}(x)\right)=f(x)-\eta f^{\prime 2}(x)+\mathcal{O}\left(\eta^{2} f^{\prime 2}(x)\right) f(x−ηf′(x))=f(x)−ηf′2(x)+O(η2f′2(x))
f ( x − η f ′ ( x ) ) ≲ f ( x ) f\left(x-\eta f^{\prime}(x)\right) \lesssim f(x) f(x−ηf′(x))≲f(x)
x ← x − η f ′ ( x ) x \leftarrow x-\eta f^{\prime}(x) x←x−ηf′(x)
∇ f ( x ) = [ ∂ f ( x ) ∂ x 1 , ∂ f ( x ) ∂ x 2 , … , ∂ f ( x ) ∂ x d ] ⊤ \nabla f(\mathbf{x})=\left[\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \frac{\partial f(\mathbf{x})}{\partial x_{2}}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_{d}}\right]^{\top} ∇f(x)=[∂x1∂f(x),∂x2∂f(x),…,∂xd∂f(x)]⊤
f ( x + ϵ ) = f ( x ) + ϵ ⊤ ∇ f ( x ) + O ( ∥ ϵ ∥ 2 ) f(\mathbf{x}+\epsilon)=f(\mathbf{x})+\epsilon^{\top} \nabla f(\mathbf{x})+\mathcal{O}\left(\|\epsilon\|^{2}\right) f(x+ϵ)=f(x)+ϵ⊤∇f(x)+O(∥ϵ∥2)
x ← x − η ∇ f ( x ) \mathbf{x} \leftarrow \mathbf{x}-\eta \nabla f(\mathbf{x}) x←x−η∇f(x)
f ( x + ϵ ) = f ( x ) + ϵ ⊤ ∇ f ( x ) + 1 2 ϵ ⊤ ∇ ∇ ⊤ f ( x ) ϵ + O ( ∥ ϵ ∥ 3 ) f(\mathbf{x}+\epsilon)=f(\mathbf{x})+\epsilon^{\top} \nabla f(\mathbf{x})+\frac{1}{2} \epsilon^{\top} \nabla \nabla^{\top} f(\mathbf{x}) \epsilon+\mathcal{O}\left(\|\epsilon\|^{3}\right) f(x+ϵ)=f(x)+ϵ⊤∇f(x)+21ϵ⊤∇∇⊤f(x)ϵ+O(∥ϵ∥3)
最小值点处满足: ∇ f ( x ) = 0 \nabla f(\mathbf{x})=0 ∇f(x)=0, 即我们希望 ∇ f ( x + ϵ ) = 0 \nabla f(\mathbf{x} + \epsilon)=0 ∇f(x+ϵ)=0, 对上式关于 ϵ \epsilon ϵ 求导,忽略高阶无穷小,有:
∇ f ( x ) + H f ϵ = 0 and hence ϵ = − H f − 1 ∇ f ( x ) \nabla f(\mathbf{x})+\boldsymbol{H}_{f} \boldsymbol{\epsilon}=0 \text { and hence } \epsilon=-\boldsymbol{H}_{f}^{-1} \nabla f(\mathbf{x}) ∇f(x)+Hfϵ=0 and hence ϵ=−Hf−1∇f(x)
- 收敛性分析
只考虑在函数为凸函数, 且最小值点上 f ′ ′ ( x ∗ ) > 0 f''(x^*) > 0 f′′(x∗)>0 时的收敛速度:
令 x k x_k xk 为第 k k k 次迭代后 x x x 的值, e k : = x k − x ∗ e_{k}:=x_{k}-x^{*} ek:=xk−x∗ 表示 x k x_k xk 到最小值点 x ∗ x^{*} x∗ 的距离,由 f ′ ( x ∗ ) = 0 f'(x^{*}) = 0 f′(x∗)=0:
0 = f ′ ( x k − e k ) = f ′ ( x k ) − e k f ′ ′ ( x k ) + 1 2 e k 2 f ′ ′ ′ ( ξ k ) for some ξ k ∈ [ x k − e k , x k ] 0=f^{\prime}\left(x_{k}-e_{k}\right)=f^{\prime}\left(x_{k}\right)-e_{k} f^{\prime \prime}\left(x_{k}\right)+\frac{1}{2} e_{k}^{2} f^{\prime \prime \prime}\left(\xi_{k}\right) \text{for some } \xi_{k} \in\left[x_{k}-e_{k}, x_{k}\right] 0=f′(xk−ek)=f′(xk)−ekf′′(xk)+21ek2f′′′(ξk)for some ξk∈[xk−ek,xk]
两边除以 f ′ ′ ( x k ) f''(x_k) f′′(xk), 有:
e k − f ′ ( x k ) / f ′ ′ ( x k ) = 1 2 e k 2 f ′ ′ ′ ( ξ k ) / f ′ ′ ( x k ) e_{k}-f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right)=\frac{1}{2} e_{k}^{2} f^{\prime \prime \prime}\left(\xi_{k}\right) / f^{\prime \prime}\left(x_{k}\right) ek−f′(xk)/f′′(xk)=21ek2f′′′(ξk)/f′′(xk)
代入更新方程 x k + 1 = x k − f ′ ( x k ) / f ′ ′ ( x k ) x_{k+1} = x_{k} - f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right) xk+1=xk−f′(xk)/f′′(xk), 得到:
x k − x ∗ − f ′ ( x k ) / f ′ ′ ( x k ) = 1 2 e k 2 f ′ ′ ′ ( ξ k ) / f ′ ′ ( x k ) x_k - x^{*} - f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right) =\frac{1}{2} e_{k}^{2} f^{\prime \prime \prime}\left(\xi_{k}\right) / f^{\prime \prime}\left(x_{k}\right) xk−x∗−f′(xk)/f′′(xk)=21ek2f′′′(ξk)/f′′(xk)
x k + 1 − x ∗ = e k + 1 = 1 2 e k 2 f ′ ′ ′ ( ξ k ) / f ′ ′ ( x k ) x_{k+1} - x^{*} = e_{k+1} = \frac{1}{2} e_{k}^{2} f^{\prime \prime \prime}\left(\xi_{k}\right) / f^{\prime \prime}\left(x_{k}\right) xk+1−x∗=ek+1=21ek2f′′′(ξk)/f′′(xk)
当 1 2 f ′ ′ ′ ( ξ k ) / f ′ ′ ( x k ) ≤ c \frac{1}{2} f^{\prime \prime \prime}\left(\xi_{k}\right) / f^{\prime \prime}\left(x_{k}\right) \leq c 21f′′′(ξk)/f′′(xk)≤c 时,有:
e k + 1 ≤ c e k 2 e_{k+1} \leq c e_{k}^{2} ek+1≤cek2
- 预处理 (Heissan阵辅助梯度下降)
x ← x − η diag ( H f ) − 1 ∇ x \mathbf{x} \leftarrow \mathbf{x}-\eta \operatorname{diag}\left(H_{f}\right)^{-1} \nabla \mathbf{x} x←x−ηdiag(Hf)−1∇x - 梯度下降与线性搜索(共轭梯度法)
-
随机梯度下降
- 随机梯度下降参数更新
对于有 n n n 个样本对训练数据集,设 f i ( x ) f_i(x) fi(x) 是第 i i i 个样本的损失函数, 则目标函数为:
f ( x ) = 1 n ∑ i = 1 n f i ( x ) f(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} f_{i}(\mathbf{x}) f(x)=n1i=1∑nfi(x)
其梯度为:
∇ f ( x ) = 1 n ∑ i = 1 n ∇ f i ( x ) \nabla f(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\mathbf{x}) ∇f(x)=n1i=1∑n∇fi(x)
使用该梯度的一次更新的时间复杂度为 O ( n ) \mathcal{O}(n) O(n)
随机梯度下降更新公式 O ( 1 ) \mathcal{O}(1) O(1):
x ← x − η ∇ f i ( x ) \mathbf{x} \leftarrow \mathbf{x}-\eta \nabla f_{i}(\mathbf{x}) x←x−η∇fi(x)
且有:
E i ∇ f i ( x ) = 1 n ∑ i = 1 n ∇ f i ( x ) = ∇ f ( x ) \mathbb{E}_{i} \nabla f_{i}(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\mathbf{x})=\nabla f(\mathbf{x}) Ei∇fi(x)=n1i=1∑n∇fi(x)=∇f(x)
- 动态学习率
η ( t ) = η i if t i ≤ t ≤ t i + 1 piecewise constant η ( t ) = η 0 ⋅ e − λ t exponential η ( t ) = η 0 ⋅ ( β t + 1 ) − α polynomial \begin{array}{ll}{\eta(t)=\eta_{i} \text { if } t_{i} \leq t \leq t_{i+1}} & {\text { piecewise constant }} \\ {\eta(t)=\eta_{0} \cdot e^{-\lambda t}} & {\text { exponential }} \\ {\eta(t)=\eta_{0} \cdot(\beta t+1)^{-\alpha}} & {\text { polynomial }}\end{array} η(t)=ηi if ti≤t≤ti+1η(t)=η0⋅e−λtη(t)=η0⋅(βt+1)−α piecewise constant exponential polynomial