1. 量化Quantization
-
用更小的集合表示更大的集合的过程
- 对信号源的有限近似
- 有损过程
-
应用
- A/D转换
- 压缩
-
量化方法
- 标量(Scalar)量化
- 矢量(Vector)量化
2. 量化的基本思想
- 映射一个输入间隔到一个整数
- 减少信源编码的bit
- 一般情况重构值与输入值不同
3. 量化模型
4. 量化的率失真优化
-
量化器设计问题
- 量化水平的个数,即Bin的个数
- 决策边界:Bin的边界
- 重构水平
-
量化器设计是对率失真的优化
- 为了减少码率的大小,需要减少Bin的个数
- Bin的个数减少导致重构的误差增大,失真也就随着增大
5. 失真测量
6. 量化器设计
-
量化器设计的两个方面
- 给定量化水平数目M,找到决策边界xi和重构水平使MSE最小
- 给定失真限制D,找到量化水平数目M,决策边界xi和重构水平yi使MSE<=D
7. 均匀量化(Uniform Quantization)
8. 量化与峰值信噪比
9. 中升量化器(Midrise Quantizer)
10. 中平量化器(Midtread Quantizer)
11. 死区量化器(Deadzone Quantizer)
12.非均匀量化(Non-uniform Quantization)
- 如果信源不是均匀分布的,采用均匀量化不是最优的
- 对于非均匀量化,为了减少MSE,当概率密度函数fX(x)高时,使Bin的量化步长减小,当概率密度函数fX(x)低时, 使Bin的量化步长增加。
13. 最优的标量量化
14. 量化编码
-
定长编码量化水平
- 使用等长的码字编码每个量化水平,码字长为:
- 使用等长的码字编码每个量化水平,码字长为:
-
熵编码量化水平
- 根据量化水平的概率分布情况,用变长的码字编码每个量化水平
- 平均码字长
- 比定长编码量化水平效率高
- 广泛应用在图像和视频编码中
15. 矢量量化
- 标量量化:对数据一个一个的进行量化,称为标量量化。
-
矢量量化:将数据分组,每组K个数据构成K维矢量,再以矢量为处理单元进行量化。
- 矢量量化是标量量化的多维扩展
- 标量量化是矢量量化的特殊情况
- 矢量量化工作过程
- 二维矢量量化
-
矢量量化优点
- 只传码字的下标,编码效率高
- 在相同码率下,比标量量化失真小
- 在相同失真下,比标量量化码率低
- 矢量量化缺点:复杂度随着维数的增加呈指数增加