通义千问 Qwen-72B-Chat 大模型在PAI平台的微调实践

通义千问-72B(Qwen-72B)是阿里云研发的通义千问大模型系列的720亿参数规模的大语言模型,在2023年11月正式开源。Qwen-72B的预训练数据类型多样、覆盖广泛,包括大量网络文本、专业书籍、代码等。Qwen-72B-Chat是在Qwen-72B的基础上,使用对齐机制打造的基于大语言模型的AI助手。

阿里云人工智能平台PAI是面向开发者和企业的机器学习/深度学习平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务。

本文将以Qwen-72B-Chat为例,介绍如何在PAI平台的快速开始PAI-QuickStart和交互式建模工具PAI-DSW中高效微调千问大模型。

使用PAI-DSW快速体验和轻量化微调Qwen-72B-Chat

PAI-DSW是云端机器学习开发IDE,为用户提供交互式编程环境,同时提供了丰富的计算资源。Qwen-72B-Chat的教程可以在智码实验室(https://gallery.pai-ml.com/)Notebook Gallery中检索到,参见下图:

上述Notebook可以使用阿里云PAI-DSW的实例打开,并且需要选择对应的计算资源和镜像。

快速体验Qwen-72B-Chat

首先,我们在DSW调用ModelScope快速体验Qwen-72B-Chat模型进行对话。在安装完ModelScope相关依赖后,我们可以运行如下Python代码:

from modelscope import AutoModelForCausalLM, AutoTokenizer
from modelscope import GenerationConfig

# Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen-72B-Chat", revision='master', trust_remote_code=True)

# use bf16
# model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-72B-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
# use fp16
# model = AutoModelForCausalLM.from_
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值