博客地址: http://blog.youkuaiyun.com/yueqian_zhu/
前面的两节内容介绍了StreamingContext的构造以及在此上的一系列操作。
通过调用start方法,真正开始调度执行。首先校验状态是否是INITIALIZED,然后调用JobScheduler的start方法,并将状态设置为ACTIVE。
看一下JobScheduler的start方法内部
def start(): Unit = synchronized {
if (eventLoop != null) return // scheduler has already been started
logDebug("Starting JobScheduler")
eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)
override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
}
eventLoop.start()
listenerBus.start(ssc.sparkContext)
receiverTracker = new ReceiverTracker(ssc)
inputInfoTracker = new InputInfoTracker(ssc)
receiverTracker.start()
jobGenerator.start()
logInfo("Started JobScheduler")
}
1、首先构造一个事件类型为[JobSchedulerEvent]的循环器eventLoop(包含JobStarted,JobCompleted,ErrorReported三个事件),内部有一个线程实时获取队列中的事件,有则处理。实际调用如上的onReceive/onError方法。eventLoop.start后,内部线程真正运行起来,并等待事件的到来。
2、构造ReceiverTracker
(1)从DStreamGraph中获取注册的ReceiverInputStreams
(2)获取所有ReceiverInputStreams的streamId
(3)构造一个ReceiverLauncher,它是一个接受器
(4)构造一个ReceivedBlockTracker,
用于维护所有的接收器(receiver)接收到的所有block信息,即ReceivedBlockInfo
3、调用receiverTracker的start方法。
如果receiverInputStreams不为空,则建立akka RPC服务,名称为ReceiverTracker,负责注册Receiver、AddBlock、ReportError(报告错误)、注销Receiver四个事件
调用receiverExecutor的start方法,最终调用了startReceivers方法。
/**
* Get the receivers from the ReceiverInputDStreams, distributes them to the
* worker nodes as a parallel collection, and runs them.
*/
private def startReceivers() {
val receivers = receiverInputStreams.map(nis => {
val rcvr = nis.getReceiver()
rcvr.setReceiverId(nis.id)
rcvr
})
// Right now, we only honor preferences if all receivers have them
val hasLocationPreferences = receivers.map(_.preferredLocation.isDefined).reduce(_ && _)
// Create the parallel collection of receivers to distributed them on the worker nodes
val tempRDD =
if (hasLocationPreferences) {
val receiversWithPreferences = receivers.map(r => (r, Seq(r.preferredLocation.get)))
ssc.sc.makeRDD[Receiver[_]](receiversWithPreferences)
} else {
ssc.sc.makeRDD(receivers, receivers.size)
}
val checkpointDirOption = Option(ssc.checkpointDir)
val serializableHadoopConf = new SerializableWritable(ssc.sparkContext.hadoopConfiguration)
// Function to start the receiver on the worker node
val startReceiver = (iterator: Iterator[Receiver[_]]) => {
if (!iterator.hasNext) {
throw new SparkException(
"Could not start receiver as object not found.")
}
val receiver = iterator.next()
val supervisor = new ReceiverSupervisorImpl(
receiver, SparkEnv.get, serializableHadoopConf.value, checkpointDirOption)
supervisor.start()
supervisor.awaitTermination()
}
// Run the dummy Spark job to ensure that all slaves have registered.
// This avoids all the receivers to be scheduled on the same node.
if (!ssc.sparkContext.isLocal) {
ssc.sparkContext.makeRDD(1 to 50, 50).map(x => (x, 1)).reduceByKey(_ + _, 20).collect()
}
// Distribute the receivers and start them
logInfo("Starting " + receivers.length + " receivers")
running = true
ssc.sparkContext.runJob(tempRDD, ssc.sparkContext.clean(startReceiver))
running = false
logInfo("All of the receivers have been terminated")
}
1)获取所有的receiver(接收器)
2)将receivers建立tempRDD,并分区并行化,每个分区一个元素,元素为receiver
3)创建方法startReceiver,该方法以分区元素(receiver)的迭代器作为参数,之后将该方法参数传入runJob中,针对每个分区,依次将每个分区中的元素(receiver)应用到该方法上
4)runJob的startReceiver方法。每个分区只有一个receiver,因此在该方法内构造一个ReceiverSupervisorImpl,在它内部真正的接收数据并保存。发送RegisterReceiver消息给dirver驱动。
重点介绍一下supervisor.start方法内部的逻辑实现:主要分为以下两个方法
/** Start the supervisor */
def start() {
onStart()
startReceiver()
}
(1)onStart方法:
override protected def onStart() {
blockGenerator.start()
}
- 数据真正接收到是发生在SocketReceiver.receive函数中,将接收到的数据放入到BlockGenerator.currentBuffer
- 在BlockGenerator中有一个重复定时器,处理函数为updateCurrentBuffer, updateCurrentBuffer将当前buffer中的数据封装为一个新的Block,放入到blocksForPush队列中
- 同样是在BlockGenerator中有一个BlockPushingThread,其职责就是不停的将blocksForPushing队列中的成员通过pushArrayBuffer函数传递给blockmanager,让BlockManager将数据存储到MemoryStore中
- pushArrayBuffer还会将已经由BlockManager存储的Block的id号传递给ReceiverTracker,ReceiverTracker会将存储的blockId放到对应StreamId的队列中
(2)startReceiver方法:
/** Start receiver */
def startReceiver(): Unit = synchronized {
try {
logInfo("Starting receiver")
receiver.onStart()
logInfo("Called receiver onStart")
onReceiverStart()
receiverState = Started
} catch {
case t: Throwable =>
stop("Error starting receiver " + streamId, Some(t))
}
}
1)receiver.onStart方法建立socket连接,逐行读取数据,最终将数据插入BlockGenerator的currentBuffer中。一旦插入了数据,就触发了上面重复定时器。按设置的block生产间隔(默认200ms),生成block,将block插入blocksForPushing队列中。然后,blockPushingThread线程逐个取出传递给blockmanager保存起来,同时通过AddBlock消息通知ReceiverTracker已经将哪些block存储到了blockmanager中。
2)onReceiverStart方法
向receiverTracker(位于driver端)发送RegisterReceiver消息,报告自己(receiver)启动了,目的是可以在UI中反馈出来。ReceiverTracker将每一个stream接收到但还没有进行处理的block放入到receiverInfo,其为一Hashmap. 在后面的generateJobs中会从receiverInfo提取数据以生成相应的RDD。
4、调用jobGenerator的start方法。
(1)首先构建JobGeneratorEvent类型事件的EventLoop,包含GenerateJobs,ClearMetadata,DoCheckpoint,ClearCheckpointData四个事件。并运行起来。
(2)调用startFirstTime启动generator
/** Starts the generator for the first time */
private def startFirstTime() {
val startTime = new Time(timer.getStartTime())
graph.start(startTime - graph.batchDuration)
timer.start(startTime.milliseconds)
logInfo("Started JobGenerator at " + startTime)
}
timer.getStartTime计算出来下一个周期的到期时间,计算公式:(math.floor(clock.currentTime.toDouble / period) + 1).toLong * period,以当前的时间/除以间隔时间,再用math.floor求出它的上一个整数(即上一个周期的到期时间点),加上1,再乘以周期就等于下一个周期的到期时间。
(3) 启动DStreamGraph,调用graph.start方法,启动时间比startTime早一个时间间隔,为什么呢?求告知!!!
def start(time: Time) {
this.synchronized {
if (zeroTime != null) {
throw new Exception("DStream graph computation already started")
}
zeroTime = time
startTime = time
outputStreams.foreach(_.initialize(zeroTime))//设置outputstream的zeroTime为time值
outputStreams.foreach(_.remember(rememberDuration))//如果设置过rememberDuration,则设置outputstream的rememberDuration为该值
outputStreams.foreach(_.validateAtStart)
inputStreams.par.foreach(_.start())
}
}
(4) 调用timer.start方法,参数为startTime
这里的timer为:
private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds,
longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")
内部包含一个定时器,每隔batchDuration的时间间隔就向eventLoop发送一个GenerateJobs消息,参数longTime为下一个间隔到来时的时间点
/**
* Start at the given start time.
*/
def start(startTime: Long): Long = synchronized {
nextTime = startTime
thread.start()
logInfo("Started timer for " + name + " at time " + nextTime)
nextTime
}
通过内部的thread.start方法,触发timer内部的定时器运行。从而按时间间隔产生job。
5、GenerateJobs/ClearMetadata 事件处理介绍
JobGeneratorEvent类型事件的EventLoop,包含GenerateJobs,ClearMetadata,DoCheckpoint,ClearCheckpointData四个事件
GenerateJobs:
/** Generate jobs and perform checkpoint for the given `time`. */
private def generateJobs(time: Time) {
// Set the SparkEnv in this thread, so that job generation code can access the environment
// Example: BlockRDDs are created in this thread, and it needs to access BlockManager
// Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
SparkEnv.set(ssc.env)
Try {
jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
graph.generateJobs(time) // generate jobs using allocated block
} match {
case Success(jobs) =>
val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
val streamIdToNumRecords = streamIdToInputInfos.mapValues(_.numRecords)
jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToNumRecords))
case Failure(e) =>
jobScheduler.reportError("Error generating jobs for time " + time, e)
}
eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
}
(1)allocateBlocksToBatch:首先根据time的值获取之前receiver接收到的并且通过AddBlock消息传递给receiverTracker的block元数据信息。并且将time对应的blocks信息映射保存起来。
那么,这里的time是怎么和每200ms间隔产生blocks对应起来的呢?答案就是time时间到后,将所有接收到但还未分配的blocks都划为这个time间隔内的。
(2)generateJobs:根据一个outputStream生成一个job,最终每个outputStream都调用如下的方法,见下面代码注释
注:这里的generateJob实际调用的是根据outputStream重载的方法,比如print的方法是输出一些值:
override def generateJob(time: Time): Option[Job] = {
parent.getOrCompute(time) match {<span style="font-family: Tahoma, 'Microsoft Yahei', Simsun;">//这里实际是手动调用了ReceiverInputDStream的compute方法,产生一个RDD,确切的说是BlockRDD。见下面介绍</span>
case Some(rdd) =>
val jobFunc = () => createRDDWithLocalProperties(time) {
ssc.sparkContext.setCallSite(creationSite)
foreachFunc(rdd, time)<span style="font-family: Tahoma, 'Microsoft Yahei', Simsun;">//这里将上面的到的BlockRDD和一个在每个分区上执行的方法封装成一个jobFunc,在foreachFunc方法内部通过runJob提交任务获得输出的值,从而输出</span>
}
Some(new Job(time, jobFunc))<span style="font-family: Tahoma, 'Microsoft Yahei', Simsun;">//</span><span style="font-family: Tahoma, 'Microsoft Yahei', Simsun;">将time和jobFunc再次封装成Job,返回,等待被调度执行</span>
case None => None
}
}
这里需要解释一下ReceiverInputDStream的compute方法
1)首先根据time值将之前映射的blocks元数据信息获取出来
2) 获取这些blocks的blockId,blockId其实就是streamId+唯一值,这个唯一值可以保证在一个流里面产生的唯一的Id
3)将这个batchTime时间内的blocks元信息汇总起来,保存到inputInfoTracker中
4)将sparkContext和blockIds封装成BlockRDD返回
至此,Job已经产生了。如果Job产生成功,就走Case Success(Jobs) =>分支
jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToNumRecords))
主要是根据time,jobs,以及streamId和每个streamId的记录数的映射封装成JobSet,调用submitJobSet
def submitJobSet(jobSet: JobSet) {
if (jobSet.jobs.isEmpty) {
logInfo("No jobs added for time " + jobSet.time)
} else {
listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
jobSets.put(jobSet.time, jobSet)
jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
logInfo("Added jobs for time " + jobSet.time)
}
}
可以看到,将jobSet保存到jobSets这样一个映射结构当中,然后将每个job通过JobHandler封装之后,通过一个线程调用运行起来。这个线程就是通过“spark.streaming.concurrentJobs”参数设置的一个线程池,默认是1。
接着看JobHandler被线程处理时的逻辑,见代码注释:
private class JobHandler(job: Job) extends Runnable with Logging {
def run() {
ssc.sc.setLocalProperty(JobScheduler.BATCH_TIME_PROPERTY_KEY, job.time.milliseconds.toString)
ssc.sc.setLocalProperty(JobScheduler.OUTPUT_OP_ID_PROPERTY_KEY, job.outputOpId.toString)
try {
eventLoop.post(JobStarted(job))//这里主要是设置这个job所处的jobset的processingStartTime为当时时刻
// Disable checks for existing output directories in jobs launched by the streaming
// scheduler, since we may need to write output to an existing directory during checkpoint
// recovery; see SPARK-4835 for more details.
PairRDDFunctions.disableOutputSpecValidation.withValue(true) {
job.run()//这里的run方法就是调用了封装Job时的第二个参数,一个方法参数,就是上面的jobFunc
}
eventLoop.post(JobCompleted(job))//如果这个job所处的jobset都完成了,就设置processingEndTime,并向时间循环器发送ClearMetadata消息,后续讲解
} finally {
ssc.sc.setLocalProperty(JobScheduler.BATCH_TIME_PROPERTY_KEY, null)
ssc.sc.setLocalProperty(JobScheduler.OUTPUT_OP_ID_PROPERTY_KEY, null)
}
}
}
ClearMetadata:
当一个jobset完成后,就会处理ClearMetadata消息
1、根据time的时间,过滤出在time之前的rdd,如果设置了rememberDuration,则过滤出小于(time-rememberDuration)的rdd
2、将过滤出的rdd调用unpersist
3、删除在blockManager中的block
4、根据dependencies关系链依次删除,从outputStream开始,根据链路依次进行
5、删除其它内存纪录信息
至此,关于spark stream最重要的部分,调度及运行就分析结束了!