博客地址: http://blog.youkuaiyun.com/yueqian_zhu/
shuffle的读流程也是从compute方法开始的
override def compute(split: Partition, context: TaskContext): Iterator[(K, C)] = {
val dep = dependencies.head.asInstanceOf[ShuffleDependency[K, V, C]]
SparkEnv.get.shuffleManager.getReader(dep.shuffleHandle, split.index, split.index + 1, context)
.read()
.asInstanceOf[Iterator[(K, C)]]
}
目前来说,不管是sortShuffleManager还是hashShuffleManager,getReader方法返回的都是HashShuffleReader。
接着调用read方法,如下:
/** Read the combined key-values for this reduce task */
override def read(): Iterator[Product2[K, C]] = {
val ser = Serializer.getSerializer(dep.serializer)
val iter = BlockStoreShuffleFetcher.fetch(handle.shuffleId, startPartition, context, ser)
val aggregatedIter: Iterator[Product2[K, C]] = if (dep.aggregator.isDefined) {
if (dep.mapSideCombine) {
new InterruptibleIterator(context, dep.aggregator.get.combineCombinersByKey(iter, context))
} else {
new InterruptibleIterator(context, dep.aggregator.get.combineValuesByKey(iter, context))
}
} else {
require(!dep.mapSideCombine, "Map-side combine without Aggregator specified!")
// Convert the Product2s to pairs since this is what downstream RDDs currently expect
iter.asInstanceOf[Iterator[Product2[K, C]]].map(pair => (pair._1, pair._2))
}
// Sort the output if there is a sort ordering defined.
dep.keyOrdering match {
case Some(keyOrd: Ordering[K]) =>
// Create an ExternalSorter to sort the data. Note that if spark.shuffle.spill is disabled,
// the ExternalSorter won't spill to disk.
val sorter = new ExternalSorter[K, C, C](ordering = Some(keyOrd), serializer = Some(ser))
sorter.insertAll(aggregatedIter)
context.taskMetrics.incMemoryBytesSpilled(sorter.memoryBytesSpilled)
context.taskMetrics.incDiskBytesSpilled(sorter.diskBytesSpilled)
sorter.iterator
case None =>
aggregatedIter
}
}
该方法首先调用了fetch方法,介绍一下
1、在task运行那节介绍过,shuffleMapTask运行完成后,会将shuffleId及mapstatus的映射注册到mapOutputTracker中
2、fetch方法首先尝试在本地mapstatuses中查找是否有该shuffleId的信息,有则本地取;否则想master的mapOutputTracker请求并读取,返回块管理器的地址和对应partition的文件长度
3、然后根据我们得到的shuffleId等信息去remote或者local通过netty/nio读取,返回一个迭代器
4、返回的迭代器中的数据并不是全部在内存中的,读取时会根据配置的内存最大值来读取。内存不够的话,下一个待读取
fetch方法返回一个迭代器后,根据是否mapSideCombine来区分时候需要将读取到的数据进行合并操作。合并过程与写流程类似,内存放不下就写入本地磁盘。
如果还需要keyOrdering的,new一个ExternalSorter进行外部排序。之后也是同shuffle写流程的insertAll。