图像超分辨的几种方法

本文介绍了图像超分辨的几种方法,包括最近邻、双线性、双三次插值以及深度学习方法如SRCNN、TNRD和ESPCN。SRCNN在双三次插值后加入三层网络,TNRD基于扩散方程解决图像平滑与超分辨,而ESPCN利用子像素卷积实现实时超分辨。ESPCN使用tanh激活函数,优于ReLU的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当前看了几种图像超分辨的方法,本篇博客主要介绍 最近邻插值算法、双线性插值算法、双三次插值算法(bicubic interpolation)、SRCNN、TNRD、ESPCN 几种方法。
为了方便归纳,这里借鉴一下其他几个博主的相关总结。。

1.最近邻插值算法、双线性插值算法、双三次插值算法(bicubic interpolation) 请参阅博客 https://blog.youkuaiyun.com/nandina179/article/details/85330552

2.SRCNN 方法 请参阅博客 https://blog.youkuaiyun.com/Autism_/article/details/79401798

(SRCNN就是对利用双三次插值算法降采样并恢复的图像进行 Conv(9 * 9)+relu——conv(1 * 1)+relu——conv(5*5)的操作,该过程实际上并没有改变输入和输出图像的大小,个人理解就是在双三次插值的后面加了一个三层的网络)

3.TNRD 该方法是以扩散方程(P-M方程)为基础的一种应用于Gaussian image denoising, single image super resolution, JPEG deblocking 的方法。
下面说一下个人的理解。
对于P-M扩散方程:
在这里插入图片描述
主要用于对实现图像的平滑,其具体的来源可以参见博客 htt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值