Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 11005 | Accepted: 7833 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, andFn =Fn − 1 + Fn − 2 forn ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits ofFn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., printFn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
代码:
#include <iostream>
using namespace std;
const int mod=10000;
struct Matrix
{
long long m[2][2];
};
Matrix p={1,1,
1,0};
Matrix I={1,0,
0,1};
Matrix qm(Matrix a,Matrix b)
{
Matrix c;
for(int i=0;i<2;i++)
{
for(int j=0;j<2;j++)
{ c.m[i][j]=0;
for(int k=0;k<2;k++)
{
c.m[i][j]+=(a.m[i][k]*b.m[k][j])%mod;
}
c.m[i][j]=c.m[i][j]%mod;
}
}
return c;
}
Matrix qp(long long n)
{
Matrix m=p,b=I;
while(n>=1)
{
if(n&1) b=qm(b,m);
n=n>>1;
m=qm(m,m);
}
return b;
}
int main()
{
long long n;
while(cin>>n)
{ if(n==-1) break;
Matrix ans=qp(n);
cout<<ans.m[1][0]<<endl;
}
return 0;
}