1057 Stack

实现堆栈与中位数查询

1057 Stack (30 分)

Stack is one of the most fundamental data structures, which is based on the principle of Last In First Out (LIFO). The basic operations include Push (inserting an element onto the top position) and Pop (deleting the top element). Now you are supposed to implement a stack with an extra operation: PeekMedian -- return the median value of all the elements in the stack. With N elements, the median value is defined to be the (N/2)-th smallest element if N is even, or ((N+1)/2)-th if N is odd.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤10​5​​). Then N lines follow, each contains a command in one of the following 3 formats:

Push key
Pop
PeekMedian

where key is a positive integer no more than 10​5​​.

Output Specification:

For each Push command, insert key into the stack and output nothing. For each Pop or PeekMedian command, print in a line the corresponding returned value. If the command is invalid, print Invalid instead.

Sample Input:

17
Pop
PeekMedian
Push 3
PeekMedian
Push 2
PeekMedian
Push 1
PeekMedian
Pop
Pop
Push 5
Push 4
PeekMedian
Pop
Pop
Pop
Pop

Sample Output:

Invalid
Invalid
3
2
2
1
2
4
4
5
3
Invalid

实在想不出来,太菜了自己。没想到居然还有分块的算法,实在。。。。。

解析:

首先,它会将一个序列分成 √n 块,除了最后一块,其他每一块都严格的只有 √n 个元素,然后用一个block数组记录每一个元素属于哪一块,时间复杂度为√n

 

#include<set>
#include<map>
#include<list>
#include<queue>
#include<deque>
#include<cmath>
#include<stack>
#include<cstdio>
#include<string>
#include<bitset>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<bits/stdc++.h>
using namespace std;

#define e exp(1)
#define p acos(-1)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define ll long long
#define ull unsigned long long
#define mem(a,b) memset(a,b,sizeof(a))
int gcd(int a,int b) {
	return b?gcd(b,a%b):a;
}

const int maxn=1e5+5;
int sqrN=361;
int block[361];
int table[maxn];
stack<int> st;

void Push(int x)
{
	st.push(x);
	block[x/sqrN]++;
	table[x]++;
}
void Pop()
{
	int t=st.top();
	st.pop();
	block[t/sqrN]--;
	table[t]--;
	printf("%d\n",t);
}
void PeekMedian(int k)
{
	int sum=0,index=0;
	while(sum+block[index]<k)
	{
		sum+=block[index++];
	}
	int num=index*sqrN;
	while(sum+table[num]<k)
	{
		sum+=table[num++];
	}
	printf("%d\n",num);
}
int main()
{
	char s[25];
	int T,x,k;scanf("%d",&T);
	while(T--)
	{
		scanf("%s",s);
		if(strcmp(s,"Push")==0)
		{
			scanf("%d",&x);
			Push(x);
		}
		else if(strcmp(s,"Pop")==0)
		{
			if(st.empty())puts("Invalid");
			else Pop();
		}
		else
		{
			if(st.empty())puts("Invalid");
			else 
			{
				int n=st.size();
				if(n%2)PeekMedian((n+1)/2);
				else PeekMedian(n/2);
			}
		}
	}
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值