The set [1,2,3,…,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
思路:一开始就想用一个vector保存所有的可能,最后结果返回vector[k-1],但内存超过了限制(估计也超时了)
搜了一下,还真有方法!
例:n=3,k=6
num集合中记录所有的数字,1、2、3
第6大的排列的下标是5(下标=k-1)
5/(3-1)! =2...1
1/1! =1....0
0/0! =0
得到一个序列2 1 0
那么首先取出num[2]即 3 然后删除num[2] , num集合中就是{1,2}
再取出 num[1]即2,然后删除掉num[1],num集合中就是{1}
最后取出num[0]即1
得到的第六大序列:321
class Solution {
public:
int function(int i)
{
if(i<0)
return 0;
else if(i==0)
return 1;
else{
int num=1;
for(int j=i;j>=1;j--)
num *=j;
return num;
}
}
string getPermutation(int n, int k) {
if(n<=0||k<=0)
return "";
vector<int> pos;
vector<int> num;
for(int i=1;i<=n;i++)
num.push_back(i);
int tmp=k-1;
for(int i=n-1;i>=1;i--)
{
int k=function(i);
int a=tmp/k;
pos.push_back(a);
tmp=tmp%k;
}
pos.push_back(0);
string result="";
stringstream stream;
for(int j=0;j<pos.size();j++)
{
stream<<num[pos[j]];
num.erase(num.begin()+pos[j]);
}
stream>>result;
return result;
}
};