[leetcode] Gray Code

本文介绍了两种格雷码转换方式:递归生成码表及异或转换。递归生成码表利用递归规则构造格雷码,而异或转换则实现了二进制码与格雷码之间的直接转换。

首先介绍格雷码的两种转换方式:

递归生成码表

这种方法基于格雷码是反射码的事实,利用递归的如下规则来构造:
  1. 1位格雷码有两个码字
  2. (n+1)位格雷码中的前2 n个码字等于n位格雷码的码字,按顺序书写,加前缀0
  3. (n+1)位格雷码中的后2 n个码字等于n位格雷码的码字,按逆序书写,加前缀1
2位格雷码 3位格雷码 4元格雷码 4位自然二进制码
00
01
11
10
000
001
011
010
110
111
101
100
0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

class Solution {
public:
    vector<int> grayCode(int n) {
        vector<int> ret;
        ret.push_back(0);
        if (n == 0)
            return ret;
        ret.push_back(1); 
       if (n== 1)
            return ret;
        ret.push_back(3); ret.push_back(2);
        int add = 2;
        for (int i = 3; i <= n; ++i)
        {
            add *= 2;
            for (int j = ret.size() - 1; j >= 0; --j)
            {
                ret.push_back(add + ret[j]);
            }
        }
        return ret;
    }
   
};


异或转换

二进制码→格雷码(编码)
此方法从对应的n位二进制码字中直接得到n位格雷码码字,步骤如下:
  1. 对n位二进制的码字,从右到左,以0到n-1编号
  2. 如果二进制码字的第i位和i+1位相同,则对应的格雷码的第i位为0,否则为1(当i+1=n时,二进制码字的第n位被认为是0,即第n-1位不变) [5]  
公式表示
(G:格雷码,B:二进制码)
例如:二进制码0101,为4位数,所以其所转为之格雷码也必为4位数,因此可取转成之二进位码第五位为0,即0 b3 b2 b1 b0。
0 xor 0=0,所以g3=0
0 xor 1=1,所以g2=1
1 xor 0=1,所以g1=1
0 xor 1=1,所以g0=1
因此所转换为之格雷码为0111
格雷码→二进制码(解码)
从左边第二位起,将每位与左边一位解码后的值异或,作为该位解码后的值(最左边一位依然不变)。依次异或,直到最低位。依次异或转换后的值(二进制数)就是格雷码转换后二进制码的值。
公式表示
(G:格雷码,B:二进制码)
原码:p[n:0]; 格雷码:c[n:0](n∈N);编码:c=G(p);解码:p=F(c);
书写时按从左向右标号依次减小,即MSB->LSB,编解码也按此顺序进行
举例:
如果采集器器采到了 格雷码:1010
就要将它变为自然二进制:
0 与第四位 1 进行异或结果为 1
上面结果1与第三位0异或结果为 1
上面结果1与第二位1异或结果为 0
上面结果0与第一位0异或结果为 0
因此最终结果为:1100 这就是二进制码即十进制 12
当然人看时只需对照表1一下子就知道是12
................... c[n]=p[n],

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值