本系列文章由 youngpan1101 出品,转载请注明出处。
文章链接: http://blog.youkuaiyun.com/youngpan1101/article/details/71086682
作者:宋洋鹏(youngpan1101)
邮箱: yangpeng_song@163.com
该讲详细资料下载链接 【Baidu Yun】【Video】【Code】
若您觉得本博文对您有帮助,请支持高博的新书《视觉SLAM十四讲》,【点击购买】
若您觉得本博文对您有帮助,请支持高博的新书《视觉SLAM十四讲》,【点击购买】
若您觉得本博文对您有帮助,请支持高博的新书《视觉SLAM十四讲》,【点击购买】
三维空间的刚体运动描述方式
Eigen 概括
- Eigen 是一个基于 C++ 模板的线性代数库,提供了快速的有关矩阵的线性代数运算,还包括解方程等功能。
- 直接将库下载后放在项目目录下,然后只要包含头文件就能使用,非常方便。
- Eigen 的接口清晰,稳定高效。
——————————– 分割线<< 家有小武,如有一母 >>分割线 ——————————–
Eigen 安装与使用(Ubuntu 14.04)
到 官网 进行下载或者在终端输入命令进行安装
$ sudo apt-get install libeigen3-dev
搜索 Eigen 库的路径(locate 和 updatedb 的使用、配置)
$ sudo updatedb $ locate eigen3
引入头文件即可使用(Eigen 库没有库文件)
需要在 CMakeLists.txt 里指定 Eigen 头文件目录(这里填入命令安装的默认路径):
INCLUDE_DIRECTORIES(“/usr/include/eigen3”)Eigen 库的用法
- eigenMatrix.cpp 的代码:
#include <iostream>
using namespace std;
#include <ctime>
// Eigen 部分
#include <Eigen/Core>
// 稠密矩阵的代数运算(逆,特征值等)
#include <Eigen/Dense>
#define MATRIX_SIZE 50
/****************************
* 本程序演示了 Eigen 基本类型的使用
****************************/
int main( int argc, char** argv )
{
// Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列
// 声明一个2*3的float矩阵
Eigen::Matrix<float, 2, 3> matrix_23;
// 同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是Eigen::Matrix
// 例如 Vector3d 实质上是 Eigen::Matrix<double, 3, 1>,即三维向量
Eigen::Vector3d v_3d;
// 这是一样的
Eigen::Matrix<float,3,1> vd_3d;
// Matrix3d 实质上是 Eigen::Matrix<double, 3, 3>
Eigen::Matrix3d matrix_33 = Eigen::Matrix3d::Zero(); //初始化为零
// 如果不确定矩阵大小,可以使用动态大小的矩阵
Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic > matrix_dynamic;
// 更简单的
Eigen::MatrixXd matrix_x;
// 这种类型还有很多,我们不一一列举
// 下面是对Eigen阵的操作
// 输入数据(初始化)
matrix_23 << 1, 2, 3, 4, 5, 6;
// 输出
cout << matrix_23 << endl;
// 用()访问矩阵中的元素
for (int i=0; i<2; i++) {
for (int j=0; j<3; j++)
cout << matrix_23(i,j) << "\t";
cout << endl;
}
// 矩阵和向量相乘(实际上仍是矩阵和矩阵)
v_3d << 3, 2, 1;
vd_3d << 4, 5, 6;
// 但是在Eigen里你不能混合两种不同类型的矩阵,像这样是错的
// Eigen::Matrix<double, 2, 1> result_wrong_type = matrix_23 * v_3d;
// 应该显式转换
Eigen::Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;
cout << result << endl;
Eigen::Matrix<float, 2, 1> result2 = matrix_23 * vd_3d;
cout << result2 << endl;
// 同样你不能搞错矩阵的维度
// 试着取消下面的注释,看看Eigen会报什么错
// Eigen::Matrix<double, 2, 3> result_wrong_dimension = matrix_23.cast<double>() * v_3d;
// 一些矩阵运算
// 四则运算就不演示了,直接用+-*/即可。
matrix_33 = Eigen::Matrix3d::Random(); // 随机数矩阵
cout << matrix_33 << endl << endl;
cout << matrix_33.transpose() << endl; // 转置
cout << matrix_33.sum() << endl; // 各元素和
cout << matrix_33.trace() << endl; // 迹
cout << 10*matrix_33 << endl; // 数乘
cout << matrix_33.inverse() << endl; // 逆
cout << matrix_33.determinant() << endl; // 行列式
// 特征值
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigen_solver ( matrix_33 );
cout << "Eigen values = \n" << eigen_solver.eigenvalues() << endl;
cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << endl;
// 解方程
// 我们求解 matrix_NN * x = v_Nd 这个方程
// N的大小在前边的宏里定义,它由随机数生成
// 直接求逆自然是最直接的,但是求逆运算量大
Eigen::Matrix< double, MATRIX_SIZE, MATRIX_SIZE > matrix_NN;
matrix_NN = Eigen::MatrixXd::Random( MATRIX_SIZE, MATRIX_SIZE );
Eigen::Matrix< double, MATRIX_SIZE, 1> v_Nd;
v_Nd = Eigen::MatrixXd::Random( MATRIX_SIZE,1 );
clock_t time_stt = clock(); // 计时
// 直接求逆
Eigen::Matrix<double,MATRIX_SIZE,1> x = matrix_NN.inverse()*v_Nd;
cout <<"time use in normal invers is " << 1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC << " ms"<< endl;
// 通常用矩阵分解来求,例如QR分解,速度会快很多
time_stt = clock();
x = matrix_NN.colPivHouseholderQr().solve(v_Nd);
cout <<"time use in Qr compsition is " <<1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC <<" ms" << endl;
return 0;
}
- CMakeLists.txt 的代码:
cmake_minimum_required( VERSION 2.8 )
project( useEigen )
set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-O3" )
# 添加Eigen头文件
include_directories( "/usr/include/eigen3" )
add_executable( eigenMatrix eigenMatrix.cpp )
- 输出结果:
1 2 3
4 5 6
1 2 3
4 5 6
10
28
32
77
0.680375 0.59688 -0.329554
-0.211234 0.823295 0.536459
0.566198 -0.604897 -0.444451
0.680375 -0.211234 0.566198
0.59688 0.823295 -0.604897
-0.329554 0.536459 -0.444451
1.61307
1.05922
6.80375 5.9688 -3.29554
-2.11234 8.23295 5.36459
5.66198 -6.04897 -4.44451
-0.198521 2.22739 2.8357
1.00605 -0.555135 -1.41603
-1.62213 3.59308 3.28973
0.208598
Eigen values =
-0.827453
0.533448
1.35323
Eigen vectors =
-0.299578 -0.762914 -0.572901
0.294233 -0.645089 0.705186
0.907568 -0.0426913 -0.417729
time use in normal invers is 0.214 ms
time use in Qr compsition is 0.151 ms