基于微调技术打造企业级私有大模型

部署运行你感兴趣的模型镜像

1

为什么要微调 LLM 大模型?

GPT 是“大力出奇迹”的典型代表,通过千亿级训练参数带来惊人的智能,但大模型并不完美,甚至一些在我们看来很简单的任务都完成不了,比如我们构建一个简单计算任务(如下):

GPT-4 回答错误如下:

尽管 AI 在一定程度上模仿了人脑的工作方式,但实际上,机器人和人脑在处理信息时采用的策略有很大的不同。因此,即使在未来,我们也需要继续改进 AI 框架,以解决这种差距。比如一个百万位数的加法任务,GPT-4 囿于 token 数的限制是不可能完成这个任务的,但人类却可以,这恰是人类和 AI 需要弥补的 GAP。

这就是为什么 LLM 大模型已经很强大了,我们还需要继续微调它的其中一个原因,除了这个原因外,还有4点需要微调的原因。

第二、缺乏专有数据,比如:企业内部的私有数据。

第三、缺乏最新数据,比如:GPT-4 的训练数据截止到2021年9月。

第四、预训练成本高,比如:GPT-3 预训练成本为140万美金。

第五、提升数据安全性,比如:企业私有数据是不能传递给第三方大模型的,基于开源大模型的微调才能满足业务的需求。

**2**__—

如何微调 LLM 大模型?

微调(Fine-tuning)分为全参数量微调和局部参数量微调,或者叫 PEFT 高效参数微调,PEFT 微调步骤如下:

第一步:数据工程,选择整理本次微调所需要的知识即任务数据集,以(Q,A)的问答对整理好,微调的数据量最好在 10K~100K 量级。

第二步:加载预训练大模型(比如:ChatGLM3-6B):选择一个与所需任务相关的预训练大模型,并加载其权重。

第三步:对大模型进行微调:将第一步任务数据集作为输入,以最小化大模型在此数据集上的损失函数。在这个过程中,通常需要在训练集和验证集上进行多次迭代,以避免过拟合问题。

基于以上步骤,详细总结如下:

除此之外,微调企业级专有大模型这些技术到底是怎么落地的?在企业级的真实案例中如何实践?

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

-END-


👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值