简介
Disruptor是英国外汇交易公司LMAX开发的一个高性能队列,研发的初衷是解决内存队列的延迟问题(在性能测试中发现竟然与I/O操作处于同样的数量级)。基于Disruptor开发的系统单线程能支撑每秒600万订单,2010年在QCon演讲后,获得了业界关注。2011年,企业应用软件专家Martin Fowler专门撰写长文介绍。同年它还获得了Oracle官方的Duke大奖。
目前,包括Apache Storm、Camel、Log4j 2在内的很多知名项目都应用了Disruptor以获取高性能。在美团技术团队它也有不少应用,有的项目架构借鉴了它的设计机制。本文从实战角度剖析了Disruptor的实现原理。
需要特别指出的是,这里所说的队列是系统内部的内存队列,而不是Kafka这样的分布式队列
Java内置队列
介绍Disruptor之前,我们先来看一看常用的线程安全的内置队列有什么问题。Java的内置队列如下表所示。
队列 | 有界性 | 锁 | 数据结构 |
---|---|---|---|
ArrayBlockingQueue | bounded | 加锁 | arraylist |
LinkedBlockingQueue | optionally-bounded | 加锁 | linkedlist |
ConcurrentLinkedQueue | unbounded | 无锁 | linkedlist |
LinkedTransferQueue | unbounded | 无锁 | linkedlist |
PriorityBlockingQueue | unbounded | 加锁 | heap |
DelayQueue | unbounded | 加锁 | heap |
队列的底层一般分成三种:数组、链表和堆。其中,堆一般情况下是为了实现带有优先级特性的队列,暂且不考虑。
我们就从数组和链表两种数据结构来看,基于数组线程安全的队列,比较典型的是ArrayBlockingQueue,它主要通过加锁的方式来保证线程安全;基于链表的线程安全队列分成LinkedBlockingQueue和ConcurrentLinkedQueue两大类,前者也通过锁的方式来实现线程安全,而后者以及上面表格中的LinkedTransferQueue都是通过原子变量compare and swap(以下简称“CAS”)这种不加锁的方式来实现的。
通过不加锁的方式实现的队列都是无界的(无法保证队列的长度在确定的范围内);而加锁的方式,可以实现有界队列。在稳定性要求特别高的系统中,为了防止生产者速度过快,导致内存溢出,只能选择有界队列;同时,为了减少Java的垃圾回收对系统性能的影响,会尽量选择array/heap格式的数据结构。这样筛选下来,符合条件的队列就只有ArrayBlockingQueue。
ArrayBlockingQueue的问题
ArrayBlockingQueue在实际使用过程中,会因为加锁和伪共享等出现严重的性能问题,我们下面来分析一下。
加锁
现实编程过程中,加锁通常会严重地影响性能。线程会因为竞争不到锁而被挂起,等锁被释放的时候,线程又会被恢复,这个过程中存在着很大的开销,并且通常会有较长时间的中断,因为当一个线程正在等待锁时,它不能做任何其他事情。如果一个线程在持有锁的情况下被延迟执行,例如发生了缺页错误、调度延迟或者其它类似情况,那么所有需要这个锁的线程都无法执行下去。如果被阻塞线程的优先级较高,而持有锁的线程优先级较低,就会发生优先级反转。
Disruptor论文中讲述了一个实验:
- 这个测试程序调用了一个函数,该函数会对一个64位的计数器循环自增5亿次。
- 机器环境:2.4G 6核
- 运算: 64位的计数器累加5亿次
|Method | Time (ms) | |— | —| |Single thread | 300| |Single thread with CAS | 5,700| |Single thread with lock | 10,000| |Single thread with volatile write | 4,700| |Two threads with CAS | 30,000| |Two threads with lock | 224,000|
CAS操作比单线程无锁慢了1个数量级;有锁且多线程并发的情况下,速度比单线程无锁慢3个数量级。可见无锁速度最快。
单线程情况下,不加锁的性能 > CAS操作的性能 > 加锁的性能。
在多线程情况下,为了保证线程安全,必须使用CAS或锁,这种情况下,CAS的性能超过锁的性能,前者大约是后者的8倍。
综上可知,加锁的性能是最差的。
关于锁和CAS
保证线程安全一般分成两种方式:锁和原子变量。
采取加锁的方式,默认线程会冲突,访问数据时,先加上锁再访问,访问之后再解锁。通过锁界定一个临界区,同时只有一个线程进入。如上图所示,Thread2访问Entry的时候,加了锁,Thread1就不能再执行访问Entry的代码,从而保证线程安全。
但是大家都知道加锁的代码效率会比较低
Disruptor的设计方案
Disruptor通过以下设计来解决队列速度慢的问题:
- 环形数组结构
为了避免垃圾回收,采用数组而非链表。同时,数组对处理器的缓存机制更加友好。
- 元素位置定位
数组长度2^n,通过位运算,加快定位的速度。下标采取递增的形式。不用担心index溢出的问题。index是long类型,即使100万QPS的处理速度,也需要30万年才能用完。
- 无锁设计
每个生产者或者消费者线程,会先申请可以操作的元素在数组中的位置,申请到之后,直接在该位置写入或者读取数据。
下面忽略数组的环形结构,介绍一下如何实现无锁设计。整个过程通过原子变量CAS,保证操作的线程安全。
一个生产者
写数据
生产者单线程写数据的流程比较简单:
- 申请写入m个元素;
- 若是有m个元素可以入,则返回最大的序列号。这儿主要判断是否会覆盖未读的元素;
- 若是返回的正确,则生产者开始写入元素。
多个生产者
多个生产者的情况下,会遇到“如何防止多个线程重复写同一个元素”的问题。Disruptor的解决方法是,每个线程获取不同的一段数组空间进行操作。这个通过CAS很容易达到。只需要在分配元素的时候,通过CAS判断一下这段空间是否已经分配出去即可。
但是会遇到一个新问题:如何防止读取的时候,读到还未写的元素。Disruptor在多个生产者的情况下,引入了一个与Ring Buffer大小相同的buffer:available Buffer。当某个位置写入成功的时候,便把availble Buffer相应的位置置位,标记为写入成功。读取的时候,会遍历available Buffer,来判断元素是否已经就绪。
下面分读数据和写数据两种情况介绍。
读数据
生产者多线程写入的情况会复杂很多:
- 申请读取到序号n;
- 若writer cursor >= n,这时仍然无法确定连续可读的最大下标。从reader cursor开始读取available Buffer,一直查到第一个不可用的元素,然后返回最大连续可读元素的位置;
- 消费者读取元素。
防止不同生产者对同一段空间写入的代码,如下所示:
public long tryNext(int n) throws InsufficientCapacityException
{
if (n < 1)
{
throw new IllegalArgumentException("n must be > 0");
}
long current;
long next;
do
{
current = cursor.get();
next = current + n;
if (!hasAvailableCapacity(gatingSequences, n, current))
{
throw InsufficientCapacityException.INSTANCE;
}
}
while (!cursor.compareAndSet(current, next));
return next;
}
通过do/while循环的条件cursor.compareAndSet(current, next),来判断每次申请的空间是否已经被其他生产者占据。假如已经被占据,该函数会返回失败,While循环重新执行,申请写入空间。
消费者的流程与生产者非常类似,这儿就不多描述了。
通过无锁CAS实现多线程高并发顺序处理
使用Disruptor比使用ArrayBlockingQueue略微复杂,为方便读者上手,增加代码样例。
代码实现的功能:每10ms向disruptor中插入一个元素,消费者读取数据,并打印到终端。详细逻辑请细读代码。
以下代码基于3.3.4版本的Disruptor包
package com.meituan.Disruptor;
/**
* @description disruptor代码样例。每10ms向disruptor中插入一个元素,消费者读取数据,并打印到终端
*/
import com.lmax.disruptor.*;
import com.lmax.disruptor.dsl.Disruptor;
import com.lmax.disruptor.dsl.ProducerType;
import java.util.concurrent.ThreadFactory;
public class DisruptorMain
{
public static void main(String[] args) throws Exception
{
// 队列中的元素
class Element {
private int value;
public int get(){
return value;
}
public void set(int value){
this.value= value;
}
}
// 生产者的线程工厂
ThreadFactory threadFactory = new ThreadFactory(){
@Override
public Thread newThread(Runnable r) {
return new Thread(r, "simpleThread");
}
};
// RingBuffer生产工厂,初始化RingBuffer的时候使用
EventFactory<Element> factory = new EventFactory<Element>() {
@Override
public Element newInstance() {
return new Element();
}
};
// 处理Event的handler
EventHandler<Element> handler = new EventHandler<Element>(){
@Override
public void onEvent(Element element, long sequence, boolean endOfBatch)
{
System.out.println("Element: " + element.get());
}
};
// 阻塞策略
BlockingWaitStrategy strategy = new BlockingWaitStrategy();
// 指定RingBuffer的大小
int bufferSize = 16;
// 创建disruptor,采用单生产者模式
Disruptor<Element> disruptor = new Disruptor(factory, bufferSize, threadFactory, ProducerType.SINGLE, strategy);
// 设置EventHandler
disruptor.handleEventsWith(handler);
// 启动disruptor的线程
disruptor.start();
RingBuffer<Element> ringBuffer = disruptor.getRingBuffer();
for (int l = 0; true; l++)
{
// 获取下一个可用位置的下标
long sequence = ringBuffer.next();
try
{
// 返回可用位置的元素
Element event = ringBuffer.get(sequence);
// 设置该位置元素的值
event.set(l);
}
finally
{
ringBuffer.publish(sequence);
}
Thread.sleep(10);
}
}
}
等待策略
生产者的等待策略
暂时只有休眠1ns。
LockSupport.parkNanos(1);
消费者的等待策略
名称 | 措施 | 适用场景 |
---|---|---|
BlockingWaitStrategy | 加锁 | CPU资源紧缺,吞吐量和延迟并不重要的场景 |
BusySpinWaitStrategy | 自旋 | 通过不断重试,减少切换线程导致的系统调用,而降低延迟。推荐在线程绑定到固定的CPU的场景下使用 |
PhasedBackoffWaitStrategy | 自旋 + yield + 自定义策略 | CPU资源紧缺,吞吐量和延迟并不重要的场景 |
SleepingWaitStrategy | 自旋 + yield + sleep | 性能和CPU资源之间有很好的折中。延迟不均匀 |
TimeoutBlockingWaitStrategy | 加锁,有超时限制 | CPU资源紧缺,吞吐量和延迟并不重要的场景 |
YieldingWaitStrategy | 自旋 + yield + 自旋 | 性能和CPU资源之间有很好的折中。延迟比较均匀 |
目前我们使用disruptor已经更新到了3.x版本,比之前的2.x版本性能更加的优秀,提供更多的API使用方式
<!-- https://mvnrepository.com/artifact/com.lmax/disruptor -->
<dependency>
<groupId>com.lmax</groupId>
<artifactId>disruptor</artifactId>
<version>3.4.2</version>
</dependency>